Çok kapsamlı bir uçak maketi satın aldığınızı düşünün. Yüzlerce küçük parçadan oluşan bu maketi yapmak için nasıl bir yol izlersiniz? Kuşkusuz bunun için yapacağınız ilk şey, kutunun üzerindeki resimlere bakmak ve içindeki montaj bilgilerinden faydalanmak olacaktır. Çünkü bir maketi yaparken montaj talimatlarını izlemek, yapılacak işin süresini kısaltır, o maketin en hatasız ve mükemmel biçimde yapılmasını sağlar.
Uçağın montajı ile ilgili bilginiz olmasa da, eğer elinizde benzer bir model varsa maketi yine yapabilirsiniz. Çünkü daha evvel gördüğünüz uçak modelinin tasarımı, onun benzerinin yapımında size önemli bir rehber olacaktır. Aynı mantıkta, doğada var olan kusursuz bir tasarımı örnek almak da, benzer işlevlere sahip bir teknolojik aygıtın tasarım ve montajının en kısa yoldan ve en mükemmel biçimde gerçekleştirilmesini sağlar. Bunun bilincinde olan pek çok bilim adamı ve araştırma-geliştirme (ARGE) uzmanı da yapacakları her yeni çalışmadan önce, bunun canlılardaki örneklerini araştırmakta, bunlardaki sistem ve tasarımları örnek alarak onları taklit etmektedirler. Diğer bir deyişle bilim adamları, Allah'ın doğada yarattığı canlıları incelemekte ve bunlardan yararlanarak yeni teknolojiler geliştirmektedirler.
Bu yönelim yeni bir bilim dalı doğurmuştur: "Biyomimetik". 'Doğadaki canlılardan taklit' anlamına gelen ve özellikle son dönemlerde teknoloji dünyasında adından sıkça söz edilen bu bilim dalı, insanlara önemli ufuklar açmıştır.
Canlılarda bulunan sistemlerin yapısını taklit etme bilimi olarak bilinen biyomimetiğin ortaya çıkışı, bugün evrim teorisini savunan bilim adamları için de çok büyük bir hezimet olmuştur. Çünkü, evrim basamağının en gelişmiş canlısı olarak kabul ettikleri insanın sözde kendinden daha ilkel olması gereken canlıları taklit etmeye çalışması, onlardan ilham alması evrimciler açısından kabul edilemez bir durumdur.
İlkel sayılan canlıların özellikleri daha gelişmiş olanlar tarafından örnek alınıyorsa bu, gelecekte var olacak teknolojilerin büyük bir bölümünün, bu sözde ilkel canlıların tasarımları üzerine kurulu olması demektir. Bu ise, çevrelerine uyum sağlayamayan ilkel canlıların yok olup kalanların geliştiğini savunan evrim teorisinin mantığına tamamen ters bir durumdur.
Evrim teorisini savunanları kısır bir döngüye sokan bu bilim dalı, gün geçtikçe gelişmekte ve teknoloji dünyasına hakim olmaktadır. Bu doğrultuda "biyomimikri" olarak isimlendirilen ve "canlıların davranışlarını taklit etme bilimi" anlamına gelen yeni bir bilim dalı daha ortaya çıkmıştır.
Bu kitapta biyomimetik ve biyomimikrinin doğada mevcut olan kusursuz sistemleri örnek alarak katettiği gelişmeler ele alınmaktadır. Daha önce pek dikkat çekmemiş, ancak canlılığın yaratılmasından bu yana doğada var olan benzersiz tasarımlar incelenmektedir. Aynı zamanda, evrim teorisini savunanlara söyleyecek tek bir söz dahi bırakmayan doğadaki akıl dolu mekanizmaların hepsinin alemlerin Rabbi olan Allah'ın örneksiz yaratmasının eseri olduğu anlatılmaktadır.
'Tasarım' ifadesinin doğru anlaşılması önemlidir. Allah'ın kusursuz bir tasarım yaratmış olması, Rabbimiz’in önce plan yaptığı daha sonra yarattığı anlamına gelmez. Bilinmelidir ki, yerlerin ve göklerin Rabbi olan Allah’ın yaratmak için herhangi bir 'tasarım' yapmaya ihtiyacı yoktur. Allah'ın tasarlaması ve yaratması aynı anda olur. Allah bu tür eksikliklerden münezzehtir.
Allah'ın, bir şeyin ya da bir işin olmasını dilediğinde, onun olması için yalnızca "Ol!" demesi yeterlidir. Ayetlerde şöyle buyurulmaktadır:
Bir şeyi dilediği zaman, O'nun emri yalnızca: "Ol" demesidir; o da hemen oluverir. (Yasin Suresi, 82)
Gökleri ve yeri (bir örnek edinmeksizin) yaratandır. O, bir işin olmasına karar verirse, ona yalnızca "OL" der, o da hemen oluverir. (Bakara Suresi, 117)
"Biomimicry" isimli kitap.
Gerek biyomimetik, gerekse biyomimikri doğadaki modelleri inceleyen, sonra da bu tasarımları taklit ederek veya bunlardan ilham alarak insanların problemlerine çözüm getirmeyi amaçlayan yeni bilim dallarıdır.
Biyomimetik, insanların doğada bulunan sistemleri taklit ederek yaptıkları maddelerin, aletlerin, mekanizma ve sistemlerin tümünü ifade eden bir terimdir. Doğadaki tasarımlar örnek alınarak yapılan aletlere, özellikle nanoteknoloji, robot teknolojisi, yapay zeka (AI), tıbbi endüstri ve askeri donanım gibi alanlarda kullanılmak için gerek duyulmaktadır.
Biyomimikri, ilk defa Montanalı bir yazar ve bilim gözlemcisi olan Janine M. Benyus tarafından ortaya atılmış bir kavramdır. Türkçe karşılığı "biyotaklit" olan bu kavram, daha sonra pek çok kişi tarafından yorumlanmış ve uygulamaya geçirilmiştir. Biyomimikri hakkında yapılan yorumlardan biri şöyledir:
Biyomimikrinin ana teması doğadan model, ölçü ve akıl olarak öğrenecek çok şeyimiz olduğudur. Bu araştırmacıların ortak noktası, doğadaki tasarıma saygı göstermeleri ve insanların karşılaştıkları problemlerin çözümünde bunları kullanarak ilham almalarıdır.
Ürün kalitesini ve verimini artırmada doğadan faydalanan şirketlerden biri olan Interface'in ürün stratejisti David Oakley de biyotaklit konusunda şunları söyler:
Doğa, benim iş ve tasarım konularında akıl hocam, yaşam tarzım için bir model. Doğanın sistemi milyonlarca senedir çalışıyor… Biyotaklit, doğadan öğrenmenin bir yoludur.
Nitekim bilim adamları hızla yaygınlaşan bu fikri benimsemişler, önlerindeki benzersiz ve kusursuz modelleri örnek alarak çalışmalarına hız kazandırmışlardır. Özellikle endüstri alanında doğadaki gibi uygun hammaddeler ve ekonomik sistemler geliştirmeyi amaçlayan bilim adamları ve araştırmacılar, şimdi el birliğiyle doğayı nasıl taklit edeceklerinin yollarını araştırmaktadırlar.
Doğadaki tasarımlar en az malzeme ve enerji ile en fazla verim almaları, kendi kendilerini onarma özellikleri, geri-dönüşümlü ve doğa-dostu olmaları, sessiz çalışmaları, estetik, dayanıklı ve uzun ömürlü olmaları bakımından teknolojik çalışmalara örnek teşkil ederler. High Country News adlı bir gazetede biyomimetik bilimsel bir hareket olarak tanımlanmış ve şöyle bir yorum yapılmıştır:
Doğal sistemleri model alarak, bugün kullandığımızdan çok daha uzun süreli teknolojiler oluşturabiliriz.
Biomimicry adlı kitabın yazarı Janine M. Benyus ise, doğada gördüğü mükemmellikler üzerinde düşünerek, doğadaki modellerin taklit edilmesi gerektiğine inanmıştır. Onu böyle bir yaklaşımı savunmaya yönelten örneklerden bazıları şunlardır:
· Arı kuşlarının 10 gramdan daha az bir yakıtla Meksika Körfezi'ni geçebilmeleri,
· Yusufçukların en iyi helikopterlerden bile daha iyi manevra yapabilmeleri,
· Termit kulelerinde bulunan iklimlendirme ve havalandırma sistemlerinin, donanım ve enerji sarfiyatı bakımından insanların yaptıklarından çok daha üstün olmaları,
· Yarasanın çok-frekanslı ileticisinin, insanların yaptığı radarlardan daha verimli ve duyarlı çalışması,
· Işık saçan alglerin vücut fenerlerini aydınlatmak için çeşitli kimyasalları biraraya getirmeleri,
· Kutup balıkları ve kurbağaların donduktan sonra yeniden hayata dönmeleri ve organlarının buz nedeniyle hasara uğramaması,
· Bukalemunun ve mürekkep balığının, bulundukları ortamla tam bir uyum içinde olacakları şekilde derilerinin renklerini, desenlerini anında değiştirmeleri,
· Arıların, kaplumbağaların ve kuşların haritaları olmadan uzun mesafeli yolculuklarb yapabilmeleri,
· Balinaların ve penguenlerin oksijen tüpü kullanmadan dalmaları,
· DNA sarmalının bilgi depolama kapasitesi,
· Yaprakların fotosentez işlemi ile, yılda 300 milyar ton şeker üretimi yaparak dünyanın en büyük kimyasal işlemini gerçekleştirmesi...
Yukarıda sadece birkaç örneğine yer verdiğimiz doğadaki hayranlık uyandıran bu gibi mekanizma ve tasarımlar, teknolojinin birçok alanını zenginleştirme potansiyeline sahiptir. Bilgi birikimimizin artması ve teknolojik imkanların gelişmesi ile birlikte bu potansiyel her geçen gün daha da ortaya çıkmaktadır.
Örneğin 19. yüzyılda doğanın taklidi sadece estetik açıdan uygulama sahasına sahipti. Dönemin ressam ve mimarları doğadaki güzelliklerden etkilenmiş, yaptıkları eserlerde bu yapıların dış görünüşlerini örnek almışlardı. Ama doğadaki tasarımların olağanüstülüğünün ve bunların taklidinin insanlar için fayda sağlayacağının anlaşılması, ancak doğal mekanizmaların moleküler seviyede incelenmesiyle başlamıştır. Çünkü doğadaki kusursuz düzen, detaya inildikçe daha da şaşırtıcı bir boyut kazanmaktadır.
Biyomimetikle ortaya çıkan malzeme ve aletler gelecekte de kullanılabilecek yapıdadır: Yeni solar hücreler, gelişmiş robotlar ve uzay gemilerinin malzemeleri gibi... Bu bakımdan doğadaki tasarımlar çok ileri bir teknolojiye ufuk açmaktadır.
Doğadaki mükemmel tasarımlar Rabbimiz'in bize verdiği çok büyük nimetlerdir. Bu tasarımları taklit etmek ve örnek olarak almak ise insanoğlunu sürekli iyiye, doğruya yöneltecek bir devrimdir. Ne var ki bilim dünyası doğadaki tasarımların çok büyük bir kaynak oluşturduğunu ve günlük hayata geçirilmesi gerektiğini, ancak son birkaç yıl içerisinde fark edebilmiştir.
Bilim otoritesi olarak kabul edilen pek çok yayın organı da doğadaki üstün yapıların içerdiği tasarımların insanlara yol göstermesi açısından çok büyük bir kaynak olduğunu kabul etmektedir. Örneğin Nature dergisi bu gerçeği şöyle ifade eder:
Doğadaki mekanizmalar üzerinde yapılan çalışmalar göstermektedir ki, filden proteine kadar pek çok yapı, tasarımcılar ve mühendisler için zengin bir fikir havuzu oluşturmaktadır. Üstelik bu havuzun derinliğini artırma potansiyeli de çok yüksektir.
Şüphesiz bu kaynağı doğru yönde kullanmak ve teknolojiye geçirmek, insanoğlunu çok hızlı bir gelişim sürecine sokacaktır. Biyomimetik dalında uzman olarak gösterilen Janine M. Benyus da, doğayı taklit ettiğimiz takdirde yiyecek ve enerji üretimi, bilgi depolama, sağlık gibi birçok alanda kendimizi rahatlıkla geliştirebileceğimizi belirtmiştir. Janine Benyus, yapraklardan esinlenilerek yapılan ve Güneş Sistemi ile çalışan mekanizmaları, hücreler gibi sinyal veren bilgisayarların üretimini, sedeften taklit edilerek yapılan kırılmaya dayanıklı seramikleri bu gelişime örnek olarak vermiştir.
Görüldüğü gibi, biyomimetik devrimi günlük hayatımızı ve yaşamımızı derinden etkileyecek, insanların daha rahat ve konforlu yaşamasını sağlayacaktır.
Bugün görmekteyiz ki gelişen teknoloji yaratılış mucizelerini tek tek keşfetmekte ve "biyomimetik" biliminde olduğu gibi canlılardaki olağanüstü tasarımları örnek alarak insanlığa hizmet etmektedir. Bu konuların ele alındığı pek çok bilimsel makaleden birkaç tanesinin başlıklarını şöyle sıralayabiliriz:
Yaşamın Muhteşem Tasarımlarından Örnek Almak
Biyomimetik Daha İyi Bir Dünya Vaad Ediyor
Bilim Doğayı Taklit Ediyor
Doğadaki Tasarımlardan Öğrenmek
Hayatın Tasarımdaki Dersleri
Biyomimikri: Gözümüzün Önünde Gizlenen Sırlar
Biyomimikri: Doğanın İlham Verdiği Buluşlar
Biyomimikri: Bizi Çevreleyen Üstün Yetenek
Biyomimetik: Doğadan İyi Dizaynlar Çıkarmak
Biyomimetik: Doğadaki Tasarımlardan Malzemeler Meydana Getirmek
Mühendisler Tasarım için Doğadan Örnek Alıyorlar
Bu makaleler okunduğunda da görülmektedir ki, bilimsel araştırmaların sonuçları Allah'ın varlığının delillerini tekrar tekrar göstermektedir.
Bugün doğadaki malzemelerin yapısını inceleyerek bunları çalışmalarında örnek olarak kullanan pek çok bilim adamı vardır. Çünkü doğadaki materyaller ihtiyaç duyulan sağlamlık, hafiflik, esneklik gibi özelliklere sahiptir. Örneğin "Abalone" adı verilen bir deniz canlısının iç kabuğu, yüksek teknolojiyle üretilen seramiklerden iki kat daha dayanıklıdır; örümceğin ipeği çelikten beş kat daha sağlamdır; midyedeki yapışkan ise suyun altında dahi etkisini koruyabilmektedir.
Bilim ve Teknik Dergisi araştırma ve yazı grubunun bir üyesi olan Gülgün Akbaba, doğadaki malzemelerin üstün özelliklerinden ve insanların bunlardan nasıl yararlanacağından şöyle bahseder:
Geleneksel seramik ve cam malzemeler, hemen her gün kendini yenileyen teknolojiye ayak uyduramaz hale geldi. Bilim adamları bu boşluğu doldurabilmek için çalışmalar yapıyorlar. Doğadaki yapıların mimari sırları yavaş yavaş çözülmeye başlandı… Tıpkı doğadaki bir midye kabuğunun kendi kendini yenilemesi ya da yara almış bir köpek balığının derisinde gerçekleşen onarım gibi, teknolojilerde kullanılan malzemeler de kendi kendini yenileyebilecek. Daha sert, sağlam, dayanıklı, üstün fiziksel, mekanik, kimyasal ve elektromanyetik özelliklere sahip olan bu malzemeler, örneğin uzay araştırmalarında roket, uzay mekiği, uydu taşıyıcıları gibi araçların atmosfer giriş ve çıkışlarında gereksinim duyulan yüksek sıcaklıklara dayanıklılık ve hafiflik özelliklerini taşıyor. Kıtalararası ulaşım için geliştirilmesi planlanan süpersonik dev yolcu uçakları çalışmalarında da ağırlıkça hafif ve yüksek sıcaklıklara dayanıklı malzemeler gerekiyor. Tıpta örneğin yapay kemik üretiminde gereksinim duyulansa, süngerimsi görünüşü, sert yapısıyla dokusu doğala olabildiğince yakın malzemeler.
Seramik, inşaattan elektrik malzemelerine kadar geniş kullanım alanı olan bir malzemedir. Ne var ki bu malzeme üretilirken çoğu zaman 1000-1500 oC'den daha fazla sıcaklıklara ulaşan bir ısının kullanılması gerekir.
Abalone
Doğada birçok seramik malzeme vardır. Ancak bunların oluşumu sırasında hiçbir zaman böyle yüksek sıcaklıklar kullanılmaz. Örneğin midye kabuğu 4oC'de ve en mükemmel biçimde oluşmaktadır. Doğadaki bu üstün yaratılış örneği bir Türk bilim adamı olan İlhan Aksay'ın dikkatini çekmiş ve kendisi daha iyi, sağlıklı, kullanışlı, işlevsel seramiklerin nasıl üretileceği konusuna yönelmiştir. Bazı deniz hayvanlarının kabuklarının iç yapılarını inceleyen Aksay, Abalone adlı deniz canlısının kabuğundaki yapının olağanüstülüğünü hemen fark etmiştir. Aksay konuyla ilgili şunları söyler:
Midye kabuğu elektron mikroskobu altında 300.000 kez büyütüldüğünde, tuğladan bir duvar görünümü ortaya çıkar. Bu duvar, harç niteliğindeki bir proteinden ve kalsiyum karbonattan yapılmış tuğlalardan oluşur. Kalsiyum karbonat kırılgan bir niteliğe sahip olmasına karşın, kabuk katmanlı yapısından dolayı olağanüstü sağlam ve insan yapımı seramikten daha az kırılgandır. Bir halatın sadece bir ipi koptuğunda bütün halat kopmuş olmaz. İşte buna benzer şekilde midye kabuğunun bu katmanlı yapısı çatlakların yayılmasına engel olur.
1
Aksay, bu modellerden esinlenerek son derece sert ve dayanıklı alüminyum-bor karbür metal- seramik bir malzeme geliştirmiştir. Bu malzeme, ABD'de ordunun çeşitli laboratuvarlarında denendikten sonra tanklarda zırh olarak kullanılmıştır.
Bugün bilim adamları biyomimetik malzemelerin üretilmesi için mikroskobik boyutlarda incelemeler yapmaktadır. Bu bilim adamlarından biri olan Prof. Aksay da, kemik ve diş türü biyoseramiklerin, vücut sıcaklığında, protein gibi organik maddelerin birleştirilmesiyle oluştuğunu ve bunların insan üretimi seramiklerden çok daha üstün nitelikler gösterdiğini açıklamıştır. Aksay'ın çalışmaları, yani doğadaki üstün niteliklerin nanometre (milimetrenin milyonda biri) boyutlarındaki birleştirmeden kaynaklanmış olduğu tezi, bu boyutlarda araç üretmeyi amaçlayan birçok elektronik şirketini biyoesinli malzeme (biyolojik malzemelerden esinlenilerek hazırlanan insan yapısı malzemeler) araştırmalarına yöneltmiştir.
Endüstride kullanılan pek çok madde zararlı kimyasalların bulunduğu, yüksek ısı ve basınç gerektiren ortamlarda üretilirler. Halbuki doğadaki materyaller "yaşam dostu" olarak ifade edebileceğimiz zararsız koşullarda -örneğin su bazlı solüsyonlarda, oda sıcaklığında- üretilirler. Bu da kuşkusuz, bilim adamları için son derece önemli bir avantaj sağlar.
Midye kabuğu mikroskobik boyuttaki tuğlalardan oluşur. Bu katmanlı yapı kabuktaki çatlakların yayılmasına engel olur.
Mercanlar sağlamlık açısından midye kabuklarındaki sedef ile yarışabilir. Mercanlar, denizdeki kalsiyum tuzlarını kullanarak gemilerin çelik gövdelerini yaracak kadar sert bir yapı oluştururlar.
Sentetik elmas üreticileri, metal alaşım tasarımcıları, polimer bilimcileri, fiber optik uzmanları, ince seramik üreticileri ve yarı-iletken malzeme geliştirenler en pratik yol olarak biyomimetik yöntemlerine başvurmaktadırlar. Çünkü her yönden ihtiyaçlarına cevap veren doğadaki malzemeler, aynı zamanda çok geniş bir çeşitliliğe de sahiptir. Dolayısıyla çeşitli dallarda araştırma yapan uzmanlar, kurşun geçirmez yeleklerden jet motorlarına kadar pek çok konuda, doğada bulunan üstün özelliklerdeki malzemeleri suni yollardan elde edebilmek için orijinallerini taklit etmeye başlamışlardır.
İnsanların yaptığı malzemeler bir süre sonra çatlar, kırılır. Bu durumda dışarıdan bir müdahaleyle, örneğin yapıştırmayla malzeme onarılır. Oysa doğadaki durum farklıdır. Midye kabuğu gibi doğadaki bazı malzemeler kendi kendilerini yenileyebilirler. Bilim adamları da son dönemde kendini yenileyebilen polimerler, polisiklatlar vb. malzemeler üzerinde çalışmalara yönelmişlerdir. Sağlam ve kendi kendini onarabilen biyoesinli malzeme geliştirmek için örnek alınan doğal malzemelerden birisi de gergedan boynuzudur. Bu araştırmalar, 21. yüzyılın malzeme biliminde üzerinde çalışılacak konulara temel olacaktır.
Abolone adlı deniz canlısından esinlenilerek elde edilen malzeme, ABD'de ordunun çeşitli laboratuvarlarında denendikten sonra tanklarda zırh olarak kullanılmıştır.
Doğadaki pek çok malzeme insanlara örnek olabilecek üstün özelliklere sahiptir. Mesela kemiğin bir gramı demirin bir gramına oranla çok daha sağlamdır.
Birbirine karışmayan iki veya daha fazla katının bileşimiyle oluşan katı malzemelere "kompozit malzeme" denir. Doğadaki malzemelerin çoğu "kompozit" olarak adlandırılan bileşik yapılı maddelerden oluşur. Bu karışımın özelliği, kendini oluşturan maddelerin özelliklerinden çok daha üstündür.
Hafif yapılı kompozit malzemeler üstün nitelikleri nedeniyle uzay teknolojisinden, spor malzemelerine geniş bir alanda kullanılmaktadır.
Örneğin fiberglas yapay bir kompozittir ve gemi gövdesi, olta değneği, yay ve ok gibi birçok spor malzemesinin yapımında kullanılır. Fiberglas, "polimer" adı verilen jölemsi plastik bir maddenin içine karıştırılan cam liflerinden elde edilir. Polimerin sertleşmesi sonucunda oluşan kompozit malzeme hafif, sağlam ve aynı zamanda esnektir. Karışımda kullanılan liflerin ya da plastik maddenin nitelikleri değiştirilecek olursa, kompozit malzemenin özellikleri de değişir.
İnsanların ürettiği kompozitler, doğal kompozitlerden çok daha zayıf ve ilkel kalmaktadır. Grafit ve karbon liflerden oluşan kompozitler son 25 yılda insanoğlunun gerçekleştirdiği en iyi 10 mühendislik keşfi içinde yer almaktadır. Bununla beraber yeni uçaklar, uzay mekiği parçaları, spor malzemeleri, Formula-1 yarış arabaları ve yelkenliler için hafif yapıda kompozit malzemeler tasarlanmakta ve yeni buluşlar hızla ilerlemektedir.
Burada kısaca değindiğimiz kompozit malzemeler de doğadaki tüm olağanüstü yapı, malzeme ve sistemler gibi Allah'ın eşsiz yaratma sanatının birer örneğidir. Yaratılıştaki bu benzersizlik ve mükemmelliğe birçok Kuran ayetinde de dikkat çekilmiştir. Allah, benzersiz yaratmasının bir sonucu olarak, insanlara verdiği her türlü nimetin sayısının sayılamayacak kadar fazla olduğunu bir ayette şöyle bildirmiştir:
Eğer Allah'ın nimetini saymaya kalkışacak olursanız, onu bir genelleme yaparak bile sayamazsınız. Gerçekten Allah, bağışlayandır, esirgeyendir.
(Nahl Suresi, 18)
Fiberglas tekniği, teknolojide 20. yüzyılda kullanılmaya başlanmıştır. Ancak bu malzeme canlılarda, var oldukları ilk günden beri mevcuttur. Örneğin timsahın derisi fiberglasla aynı yapıda bir malzemedir.
Bilim adamları okun, bıçağın ve hatta bazen kurşunların bile işlemediği timsah derisinin neden bu kadar sağlam olduğunu yakın bir zamana kadar bilmiyorlardı. Konuyla ilgili yapılan araştırmalar çok ilginç sonuçlar vermiştir: Timsahın sırt derisinde özel bir doku bulunmaktadır. Bu dokuya sağlamlığını veren malzeme, içinde kullanılan kolajen proteini lifleridir. Bu liflerin özelliği ise dokuların içerisine eklenerek dokunun yapısını güçlendirmeleridir. Kuşkusuz bu malzeme (kolajen) bunca ayrıntıya ve özelliğe evrimcilerin iddia ettikleri gibi uzun yıllar içerisinde birbirini takip eden tesadüfler sonucunda sahip olmamıştır. Bu madde, yeryüzünde daha ilk olarak ortaya çıktığında sahip olduğu mükemmel özelliklerle birlikte yaratılmıştır.
Doğal kompozitlere başka bir örnek olarak kasları kemiklere bağlayan dokuları yani "tendon"ları verebiliriz. Tendonlar, kendilerini oluşturan kolajen bazlı lifler sayesinde son derece sert bir yapı kazanırlar. Bu liflerin bir başka özelliği ise birbirlerine örülme şekilleridir.
ABD Rutgers Üniversitesi öğretim üyelerinden Janine M. Benyus, Biomimicry adlı kitabında, kaslarımızdaki tendonların çok özel bir yöntemle inşa edildiğini söyleyerek bu konudaki tespitlerini şöyle ifade etmiştir:
Dirsekle bileğiniz arasındaki tendon, asma bir köprüyü taşıyan halatlarda olduğu gibi, birbirine dolanmış kablo demetlerinden oluşur. Her bir kablo demeti ise, kendi içinde daha ince kabloların birbirine dolanmasından oluşmuştur. Bu daha ince kablolar da, birbirine dolanmış molekül demetlerinden meydana gelir. Hatta moleküllerdeki atomlar bile sarmal bir yapı halinde dururlar.
Nitekim günümüz asma köprülerinde kullanılan çelik halat teknolojisi, insan vücudundaki tendonların yapısı örnek alınarak geliştirilmiştir. Tendonların bu benzersiz tasarımı, Allah'ın üstün sanatının ve sonsuz ilminin apaçık delillerinden sadece birisidir.
1. Kablo demeti
2. Kablo teli
3. Taşıyıcı halat
4. Kas
5. Kas lifi
Asma köprülerdeki taşıyıcı halatlar, kaslarımızda olduğu gibi kablo demetlerinden oluşur.
Yunus ve balinaların vücutları yağ tabakası ile kaplıdır. Bu tabaka balinalara nefes almaları için yüzeye çıkabilmelerini sağlayan doğal bir şamandıra görevi görür. Aynı zamanda bu sıcakkanlı memeliyi okyanusun soğuk sularından korur. Balina yağının bir başka özelliği ise şeker ve proteine nazaran iki ile üç kat daha fazla enerji vermesidir. Balina, binlerce kilometre yol katettiği ve yeteri kadar beslenemediği uzun göçlerde ihtiyaç duyduğu enerjiyi vücudundaki bu yağdan temin eder.
Bunun yanı sıra balina yağı lastik gibi esnek bir malzemeden oluşur. Balina kuyruğunu suya her vurduğunda kuyruğu önce sıkışır, sonra genleşerek eski halini alır. İşte bu özellik balinaya hem ekstra bir hız kazandırır hem de uzun yolculuklarda enerji tasarrufu sağlar. Balina yağı tüm bu özelliklerinden ötürü, bilinen en çok fonksiyona sahip malzeme olarak kabul edilmektedir.
Balina yağı balinalarda yüzyıllardır var olan bir maddedir. Ancak bu yağın bir ağ gibi birbirine geçen kolajen liflerden oluştuğu yakın bir zamanda keşfedilebilmiştir. Bilim adamları bu yağ-kompozit karışımının işlevlerini anlamak için halen çalışmalar yapmaktadırlar. Şu ana kadar edindikleri bilgiler bile, sentetik malzeme üretiminde son derece faydalı olmuştur.
Jet motorlarındaki güçlü pervanelerin yapımında kullanılacak malzemenin geliştirilmesinde, inciyi oluşturan sedefin yapısı taklit edilmektedir. Pek çok yumuşakçanın kabuğunun iç katmanındaki sedefin %95'i tebeşirdir; fakat sedef kompozit yapısı sayesinde tebeşirden 3.000 kat daha dayanıklıdır. Bu yapı incelendiğinde 8 mikron (1 mikron=10-6 metre) eninde ve 0,5 mikron kalınlığındaki mikroskobik plakaların tabakalar şeklinde dizildiği görülür. Bu plakalar kalsiyum karbonatın yoğun ve kristal gibi parlak bir şeklidir. Fakat bu plakaların birleştirilmesi ipek benzeri yapışkanlı bir protein sayesinde mümkün olmaktadır.
Bu kombinasyon iki yönlü bir sertlik sağlar. Öncelikle sedef üzerine ağır bir yük konulduğunda oluşan kırıklar, ince tabakalar boyunca ilerler fakat protein tabakalarını geçmeye çalışırken yön değiştirirler. Bu, uygulanan kuvveti dağıtır ve böylece kırılma durdurulmuş olur. İkinci bir güçlendirici faktör de, bir kırık oluşunca, protein tabakalarının kırıklar boyunca gerilmesidir. Bu gerilim sayesinde kırılmayı devam ettirecek olan enerji emilmiş olur.
Jet motoru
1. Levhalar,
2.Organik Harç,
3. Kalsiyum Karbonat Tuğlalar
Tuğlalardan örülmüş bir duvar görünümündeki sedefin iç yapısı, organik bir harçla sıkıştırılmış tabakalardan oluşur. Darbeyle oluşan çatlaklar, bu harcı geçmeye çalışırken yön değiştirirler, böylece hızları kesilerek bir süre sonra dururlar.31
İşte sedefin hasarı azaltan bu özel yapısı, pek çok bilim adamı için de araştırma konusu olmuştur. Doğadaki malzemelerin böylesine akılcı yöntemlerle dayanıklılık kazanmış olması, kuşkusuz, üstün bir yaratılışı göstermektedir. Bu örnekten de anlaşılacağı gibi Allah bizlere apaçık varlığının ve yaratmasındaki üstün güç ve kudretinin delillerini sonsuz ilmi ve aklıyla göstermektedir. Bir ayette Allah şöyle buyurmaktadır:
Göklerde ve yerde her ne varsa O'nundur. Şüphesiz Allah, hiçbir şeye ihtiyacı olmayan (Gani)dır, övülmeye layık olandır. (Hac Suresi, 64)
Bitkisel kompozitler diğer canlılardakinden farklı olarak, kolajenden çok "selüloz" adı verilen bir maddeden oluşurlar. Ağacın sert ve dayanıklı yapısı, ürettiği bu selüloz lifler sayesinde oluşur. Çünkü selüloz, sert ve suda çözünemeyen bir maddedir. İşte tahtanın inşaatlarda kullanılmasını avantajlı kılan da selülozun bu özelliğidir. "Gerilebilen ve örneği bulunmayan" bir malzeme olarak tanımlanan selüloz, tahta binaların asırlarca ayakta durmasında, binaların, köprülerin, mobilyaların ve pek çok aletin yapımında diğer tüm malzemelerden daha fazla kullanılmaktadır.
1. Molekül
2. Monoklinik birim hücre
3. Lifçik ekseni
4. Mikro lifçikler (20-200Å)
5. Bitki hücre duvarları
6. Düzensiz ara yüzeyli kristal paketçiği
Tahta, tüp şeklindeki liflerden oluşur. (yanda) Bu, tahtaya dayanıklılık özelliğini kazandırır. Selüloz olarak adlandırılan tahtanın hammaddesi kar- maşık bir kimyasal yapıya sahiptir. (sağda altta) Eğer selülozu oluşturan kimyasal bağlar ya da atomlar farklı olsaydı, tahta bu kadar esnek ve sağlam bir yapıda olamazdı.
Tahta, düşük hızdaki darbelerin enerjisini emerek, oluşan hasarı belirli bir yerde sınırlandıran çok etkili bir maddedir. Özellikle de darbenin tahtanın damarlarına dik açıyla geldiğinde oluşan hasarın azaltılmasında çok daha iyi sonuçlar elde edilir. Yapılan araştırmalarda tahta cinsleri arasında da dayanıklılık bakımdan farklılıklar tespit edilmiştir. Bu konudaki belirleyici faktörlerden ilki yoğunluktur. Daha yoğun olan tahtalar darbe sırasında daha fazla enerji emerler. Damarların sayısı, boyutu ve dağılımı da tahtaya uygulanan darbenin deformasyonunun azaltılmasında etkili olan faktörlerdir.
İkinci Dünya Savaşı'nın "Mosquito"ları -şimdiye kadarki en çok hasar tolere edebilen uçaklar- hafif balsa tahtasının daha yoğun olan kontrplak tabakaları arasında sıkıştırılmasından yapılıyordu. Tahtanın sertliği, ona çok güvenli bir malzeme niteliği kazandırır. Tahta kırılırken çatlamaları izleyebileceğiniz kadar yavaş bir kırılma gerçekleşir ve bu özellik tedbir alınması için vakit kazandırmış olur.
1. Tahtadaki tüp şeklindeki duvarları taklit etmek için dikkatlice yerleştirilmiş lifler.
2. Cam fiberlerle kuvvetlendirilmiş reçine
3. Düz yüzeyler arasındaki oluklu katman
4. Ağacın tüp yapısını taklit edecek şekilde düzen- lenmiş katmanlı yapı.
Kurşun geçirmez giysi yapabilmek için ağacın örnek alınan yapısı. (solda) Ağaç farklı bir yapıda olsaydı, süper sert bir malzemeye sahip olamazdı.
Tahta, uç uca eklenmiş uzun, oyuk hücrelerin oluşturdukları paralel kolonlardan oluşmuştur. Çevrelerinde ise spiraller halinde selüloz lifler sarılıdır. Ayrıca bu hücreler kompleks polimer yapıda reçineden yapılmış bir madde içindedir. Spiral olarak sarılmış bu tabakalar hücre duvarının toplam kalınlığının %80'ini oluşturur ve ana yükü çeken bileşen de bu kısımdır.
Tahtanın tasarımı örnek alınarak yapılan malzemelerin, kurşun-geçirmez giyimde kullanılabilecek kadar dayanıklı olacağına inanılıyor.35
Bir tahta hücresi içe çöktüğünde, kendisini çevreleyen hücrelerden koparak darbenin enerjisini emer. Çöküntüler lifler boyunca uzun bir çatlak oluşturdukları halde tahta bozulmadan kalır. Tahta, kırık bile olsa belli bir miktardaki yükü taşıyabilecek güçtedir. Tahtanın tasarımı taklit edilerek yapılan bir materyal, günümüzde kullanılan diğer sentetik materyallerden 50 kat daha fazla dayanıklılık göstermiştir.
Tahtanın bu dizaynı günümüzde de, mermi ve bomba gibi yüksek hızlı ve tahribatı güçlü parçalara karşı koruma sağlamak için geliştirilen maddelerde taklit edilmektedir.
Buraya kadar verilen birkaç örnekte de görüldüğü gibi, doğadaki malzemeler, son derece üstün tasarımlara sahiptir. Bir sedefin ya da bir tahtanın böylesine dayanıklı olması, özel yapılarının bulunması tesadüf eseri değildir. Açıkça görülmektedir ki, söz konusu malzemelerde üstün bir tasarım vardır. Her detay –katmanların inceliği, sıklığı, damarların sayısı, dizilimi vs.- bu dayanıklılığı sağlamak üzere özel olarak planlanmış ve kusursuz bir düzenle yaratılmıştır. Allah, bir Kuran ayetinde etrafımızda bulunan herşeyi Kendisinin yarattığını şöyle bildirir:
Göklerde ve yerde ne varsa tümü Allah'ındır. Allah, herşeyi kuşatandır. (Nisa Suresi, 126)
1. Ç̧ap 2μm
2. Matriks- Polialanin kristalleri içerir
3. NPL kristali- Polialanin kristalleri içerir
4. Diğer ß plakası
5. Matriks
6. NPL kristali
Doğada pek çok böcek ipek üretir ama örümceğin ürettiği ipek diğerleri ile kıyaslandığında büyük farklılıklar sergiler.
Bilim adamlarına göre örümcek ağı yeryüzündeki en sağlam malzemelerden biridir. Bununla birlikte örümcek ağının özelliklerinin hepsi sayılacak olursa çok uzun bir liste elde edilebilir. Fakat bu listedeki birkaç madde bile bilim adamlarının bu konuda ne kadar haklı olduklarını ortaya koymaktadır. Örümcek ipeğinin özelliklerinden birkaçını şöyle sıralayabiliriz:
· Örümceklerin ürettiği ve çapı bir milimetrenin binde birinden daha küçük olan ipek ipliği, aynı kalınlıktaki çelik telden beş kat daha sağlamdır.
· Kendi uzunluğunun dört katı kadar esneyebilir.
· İpek aynı zamanda son derece hafiftir. Bu hafifliği şöyle bir örnekle de tarif edebiliriz: Dünyanın çevresi boyunca uzatılacak bir ipek ipliğinin ağırlığı sadece 320 gram gelir.
Bu özellikler tek tek bazı malzemelerde bulunabilir. Ancak hepsinin birarada bulunması son derece özel bir durumdur. Çünkü hem sağlam hem esnek bir malzeme bulabilmek oldukça zordur. Örneğin çelik halat en sağlam malzemelerden biridir. Fakat kauçuk halatlar gibi esnek olmadıklarından zamanla deforme olurlar. Kauçuk halatlar da kolay kolay deforme olmamalarına rağmen yeterince dayanıklı olmadıkları için ağır yükleri kaldıramazlar.
Şöyle bir düşünelim … Küçücük bir canlının ürettiği ip, nasıl oluyor da insanoğlunun yüzyıllarca edindiği bilgi birikimiyle yaptığı kauçuk halatlardan daha üstün özellikler taşıyabiliyor?
Örümcek ipliğini bu kadar üstün yapan şey, ipeğin kimyasal yapısında ve üretim merkezinde gizlidir. Örümcek ipliklerinin hammaddesi, örgülü helezonik amino asit zincirlerinden oluşan "keratin" adlı proteindir. Keratin; saç, tırnak, tüy, deri gibi birbirinden çok farklı maddelerin yapı taşıdır ve oluşturduğu tüm maddelerde koruyucu özelliği ile ön plana çıkar. Ayrıca keratinin esnek hidrojen bağlarla bağlanmış amino asitlerden oluşması, bu maddelere çok esnek olma özelliğini kazandırır. Bu esneklik Amerika'nın ünlü bilim dergilerinden Science News'de şöyle bir benzetme ile tarif edilmiştir:
1. İpek üretim bölgesi
2. İpek üretim bezleri
3. Memecikler
4. İplikçikler
İnsan ölçülerine göre, balık ağı boyutlarındaki bir örümcek ağı, bir yolcu uçağını yakalayabilir.
Örümceklerin kuyruklarında altı bölümden oluşan ve ipek kesesi denilen bir bölge vardır. Keselerin her birinde farklı salgılar üretilir. Bu keselerin salgıları değişik kombinasyonlarda birleşerek farklı türdeki ipek ipliklerini meydana getirirler. Keseler arasında ise büyük bir uyum vardır. İpek üretimi sırasında örümceğin vücudunda bulunan ve son derece gelişmiş özelliklere sahip olan pompalar, vanalar ve basınç sistemleri kullanılır. Üretilen ham ipek, musluk gibi çalışan bölümlerden lif şeklinde dışarı akıtılır.
Örümcek bu muslukların püskürtme basıncını da dilediği şekilde değiştirebilir. Bu, son derece önemli bir özelliktir. Çünkü bu işlem sayesinde sıvı keratini oluşturan moleküllerin yapısı da değişmiş olur. Valfler üzerindeki kontrol mekanizması sayesinde iplik üretilirken ipliğin çapı, direnci ve elastikiyeti de değiştirilebilir. Böylece ipeğin kimyasal yapısı değiştirilmeden ipliğe istenilen fiziksel özellikler kazandırılır. Eğer iplik üzerinde daha köklü bir değişim isteniyorsa bir başka bezin kullanımına geçilmesi gerekmektedir. Salgılanan farklı özelliklere sahip iplikçikler arka ayakların mükemmel kullanımı sayesinde istenilen doğrultuya yönlendirilir.
Örümceğin ipek üretim bölgesinden ayrıntılı bir görünüm.
Örümcekteki bu kimyasal mucizeyi tam olarak taklit etmek mümkün olduğunda, gerektiği kadar esneyebilen emniyet kemerleri, son derece sağlam dikişler, iz bırakmayan ameliyat iplikleri, çok hafif kablolar, kurşun geçirmez kumaşlar gibi çok sayıda faydalı malzemenin üretimi yapılabilecektir. Üstelik bu malzemelerin üretiminde zararlı ve zehirli madde de kullanılmamış olacaktır.
Örümceklerin ürettikleri ipekler olağanüstü özelliklere sahip yapı malzemeleridir. Gerilme esneklikleri çok fazla olduğundan örümcek ipeğini koparmak için gereken enerji benzer diğer biyolojik materyalleri koparmak için gereken enerjiden on kat daha fazladır.
Örümceğin ürettiği ipi parçalamak, aynı kalınlıktaki naylon bir ipi parçalamaktan çok daha fazla güç sarf etmeyi gerektirir. Örümceğin böylesine sağlam bir iplik üretebilmesinin başlıca sebeplerinden biri, temel protein bileşenlerinin kristalleşmesini ve katlanmasını kontrol ederek düzenli bir yapıda yardımcı bileşikler eklemeyi başarmasıdır. Örgü maddesi sıvı kristal olduğundan, örümcekler bu esnada minimum kuvvet harcarlar.
Örümcekler avlarını yakalamak için son derece nitelikli ağlar kurarlar. Ağ, havada uçan bir sineğin hareket enerjisini emerek durdurabilecek mükemmel bir tasarıma sahiptir. Uçak gemilerinde güverteye inen uçakları yakalamak için kullanılan gergin teller de örümceğin kullandığı sistemle benzeşir. Bu teller, 250 km/s hızla inen, tonlarca ağırlıkta bir uçağın kinetik enerjisini, tıpkı ağın yaptığı gibi güvenli bir şekilde emerek durdurur.
Örümceklerin yaptıkları ipek, bilinen doğal ya da sentetik liflerden çok daha güçlüdür. Ayrıca örümceğin ürettiği ipeği, ipek böceklerindeki gibi direkt olarak alıp kullanmak mümkün değildir. Bu nedenle kullanım için mevcut alternatif "yapay üretim"dir. Araştırmacılar da, öncelikle örümceğin ipeğini sonra da bu ipeğin nasıl üretildiğini çok kapsamlı olarak araştırmaktadırlar. Araneus diadematus adı verilen bahçe örümceği üzerinde çalışan Dr. Fritz Vollrath, bu yöntemin önemli bir bölümünü keşfetmeyi başarmıştır. Vollrath araştırmalarının sonuçlarını şöyle anlatır:
Doğayı ve tüm canlıları yaratan Allah'ın ilminin ne kadar büyük olduğunu anlamak için sadece şu örnek bile yeterlidir: Örümcekler çelikten 5 kat daha sağlam ipek ipliği üretirler. Bizim en yüksek teknoloji ürünümüz olan Kevlar ise, yüksek sıcaklıklarda, petrol türevi malzeme ve sülfürik asit kullanılarak yapılır. Bu üretim sırasında enerji girdisi aşırı derecede yüksektir ve oluşan yan ürünler de çok zehirlidir. Üstelik sağlamlık açısından Kevlar, örümcek ipliğine göre zayıftır.41
Örümcekler ipeklerini, asitleyerek sertleştiriyorlardı. İpek, oluştuğu kanala girmeden önce, sıvı proteinlerden oluşuyordu. Kanalın içinde özel hücreler, ipek proteinlerindeki suyu kendilerine çekiyorlardı. Hidrojen atomları ise diğer bir kanalda pompalanan suyu alıyor ve bir asit havuzu oluşturuyordu. İpek proteinleri asit ile biraraya geldiğinde de, birinden diğerine bir köprü oluşturuyordu. Böylece son derece kuvvetli bir ipek oluşuyordu. Örümceğin ipeği, kurşun geçirmez yeleklerde, bisiklet kasklarında kullanılan ve bir tür plastik olan "kevlar" ile karşılaştırıldığında on kat daha sağlamdır.
Bilim adamlarının ileri teknolojinin imkanlarını kullanarak elde ettikleri Kevlar, insan yapımı en güçlü sentetiktir. Fakat örümceğin ipeği Kevlardan çok daha üstün özelliklere sahiptir. Örneğin sağlamlığının yanı sıra örümcek ipeğinin yeniden işlenip tekrar tekrar kullanılması da mümkündür.
Eğer bilim adamları örümceğin iç işlemlerini başarılı bir şekilde kopyalamayı başarabilir, protein katlanmasının kusursuz olmasını sağlayabilir ve örgü maddesinin gen dizilim bilgisini ekleyebilirlerse çok özel özellikleri olan ipek temelli ipleri endüstriyel olarak üretmeleri mümkün olabilecektir. Bu nedenle örümcek ipliğindeki örme işleminin ne şekilde olduğu anlaşılabilirse, insan yapımı materyallerdeki başarının da artacağı düşünülmektedir.
Bilim adamlarının seferber olup araştırdıkları örümcek ipliği, 380 milyon yıldan beri örümcek tarafından kusursuzca örülmektedir. Bu durum, kuşkusuz Allah'ın kusursuz yaratışının delillerinden biridir. Şüphesiz bu olağanüstü olayların hepsi de Allah'ın kontrolündedir ve O'nun izniyle gerçekleşmektedir. Bu gerçek, bir ayette şöyle belirtilir:
... O'nun, alnından yakalayıp-denetlemediği hiçbir canlı yoktur… (Hud Suresi, 56)
Her örümcek, farklı işlevler için farklı niteliklere sahip iplikler üretir. Diatematus isimli örümcek, karnındaki salgı bezlerini kullanarak yedi farklı tipte ipek üretebilir. Bu üretim metodunun benzerleri günümüzde birçok tekstil makinesinde kullanılmaktadır. Ancak bu örümcekteki birkaç milimetreküplük üretim yeri, tekstil makinelerinin devasa boyutları ile kıyas bile kabul etmez. Örümceğin bir başka üstünlüğü ise ürettiği ipliğin tamamen geri dönüşümlü olmasıdır. Örümcek bozulan ağını yiyerek yeniden iplikçik üretebilir.
Birisi size son yıllarda kullanmaya başladığımız fiberoptik teknolojisini (ışık ve yüksek kapasitede bilgi iletme özelliğine sahip fiber optik kablolardan oluşan sistem) milyonlarca yıldır kullanan canlılar olduğunu söyleseydi ne düşünürdünüz?
Söz konusu teknolojiyi kullananlar çok iyi tanıdığımız ancak belki de sahip oldukları üstün tasarım çoğu kimsenin aklına dahi gelmeyen bitkilerdir.
Pek çok insan çevresine alışkanlıkla, yüzeysel olarak bakar, Allah'ın canlılarda yarattığı üstün tasarım örneklerini görmezden gelerek hiç düşünmez. Oysa bütün canlılar bu alışkanlık perdesini kaldıracak sırlarla doludur. Bu sırları keşfedebilmek için sadece neden, nasıl, niçin sorularını sormak yeterlidir. Bu soruların cevaplarını düşünen insan çevremizde gördüğümüz herşeyi sonsuz güç, bilgi ve akıl sahibi olan Rabbimiz'in yarattığını fark edecektir. Örnek olarak bitkilerin gerçekleştirdiği fotosentez olayını alalım. Fotosentez sırları hala çözülememiş bir yaratılış mucizesidir.
Bitki ve ağaç (O'na) secde etmektedirler. (Rahman Suresi, 6)
Bitki hücrelerinin güneş ışığını, insanların ve hayvanların besin yoluyla alabilecekleri bir enerjiye dönüştürmelerine "fotosentez" denir. Bu tanım belki ilk okuyuşta pek çok kimse için çok dikkat çekici olmayabilir. Ne var ki biyomimetik uzmanları fotosentezin yapay olarak gerçekleştirilmesinin tüm dünyayı değiştirecek bir olay olduğuna inanmaktadırlar.
Bitkiler fotosentezi birbirini takip eden oldukça kompleks bir dizi işlem sonucunda gerçekleştirirler. Bu işlemlerin tam olarak neler olduğu henüz bilinmemektedir.
Fotosentezin sadece bu özelliği bile evrim teorisini savunanlara söz hakkı tanımamaktadır. Prof. Dr. Ali Demirsoy'un şu sözleri, evrimci bilim adamlarının fotosentez karşısında içine düştükleri açmazı çok iyi bir şekilde tarif eder:
Fotosentez oldukça karmaşık bir olaydır ve hücrenin içerisindeki organelde ortaya çıkması olanaksız görülmektedir. Çünkü tüm kademelerin birden oluşması olanaksız, tek tek oluşması da anlamsızdır.
Bitkiler güneş ışığını "kloroplast" adı verilen doğal solar hücrelerle yakalarlar. Biz de yapay solar hücrelerle (güneş panelleri) elde edilen enerjiyi alarak pillerde depolarız.
Solar hücre (güneş paneli), ışığı elektrik enerjisine çevirir. Hücrenin düşük güçlü çıktısı (low power output), çok sayıda panel kullanılmasını gerektirir. Solar hücrelerin, insanların ihtiyaç duyduğu enerjiyi karşılayabilmeleri için yapraklarda olduğu gibi sadece güneş ışıklarına bakmaları yeterlidir. Kloroplastların yaptığı iş tam olarak taklit edilebildiğinde yüksek enerji sarfiyatı yapan cihazların bile küçücük güneş pilleri ile çalıştırılabilmesi mümkün olacaktır. Uzay mekikleri ve yapay uydular başka bir enerji kaynağına ihtiyaç duymadan sadece güneş enerjisi ile uçabilecektir.
Böylesine üstün özelliklere sahip olan, bilim adamlarının büyük bir hayranlık duydukları ve taklit etmeye çalıştıkları bitkiler de, yaratılan her canlı gibi Allah'a boyun eğmiştir. Bu gerçek, bir ayette şöyle bildirilir:
İnsanların bitkilerden öğrenebilecekleri sadece solar hücrelerle sınırlı değildir. Bitkiler insanlara, inşaat sektöründen parfüm endüstrisine kadar birçok yeni ufuk açmaktadır.
Günümüzde, gelişmiş laboratuvarlarda parfüm, deodorant, sabun kokusu üreten kimya mühendisleri ise bu salgı bezlerinin yaptıklarını taklit ederek, güzel kokular üretmeye çalışırlar. Örneğin Nina Ricci, Guerlain ve Christian Dior gibi pek çok ünlü firma ürettikleri kokuların içeriklerinde doğada bulunan bitki özlerini kullanmaktadırlar.44
Her eşyanın yüzeyinin sudan, kirden hatta parlak ışıktan bile zarar görme ihtimali vardır. Bundan ötürü bilim adamları araba ve mobilya cilalarını, ultraviyole güneş ışınlarını engelleyen sıvıları üretmişlerdir. Hepsinin amacı, yüzeyi, meydana gelebilecek herhangi bir aşınma ve yırtınmadan korumaktır. Doğadaki hayvanlar ve bitkiler de, kendi hücrelerinin içlerinde, yüzeylerini dış etkenlere karşı koruyacak birtakım kimyasal maddeler üretirler. Doğadaki canlıların bünyeleri tarafından üretilen ve bilim adamlarını hayrete düşüren bu kimyasal karışımlar, tasarımcıların taklit etmek için uğraştıkları kompleks örneklerdir.
Yaprakların dış yüzeyleri cilalı ve ince bir tabakayla kaplıdır, bu sayede bitkiler sudan korunur. Bu korunma zorunludur; çünkü havadan emilen ve bitkinin yaşaması için gerekli olan karbondioksit, yaprak hücrelerinin aralarında bulunur. Eğer bu hücrelerin arası suyla dolu olsaydı o zaman karbondioksit oranı azalacak ve bitkilerin yaşaması için gerekli olan fotofentez işlemi yavaşlayacaktı. Ama yaprak yüzeylerindeki ince tabaka sayesinde bu tehlike önlenir ve bitkiler rahatlıkla fotosentez yapabilir.
Ahşap yüzeyleri kaplamak, kirden ve aşınmadan korunmalarını sağlamak açısından oldukça önemlidir. Özellikle de yumuşak ahşapların içine girerek onları çürütebilecek su sızıntılarına karşı bunu yapmak çok gerekli bir işlemdir. Peki, kullanılan ilk ahşap kaplamaların doğal yağlardan ve böceklerin ürettiği salgılardan elde edilen malzemelerden yapıldığını biliyor muydunuz?
İnsanların günlük hayatta kullandığı birçok koruyucu malzeme aslında doğadaki canlılar tarafından çok daha önceden kullanılmaktadır. Ahşap kaplama bunlardan yalnızca bir tanesidir. Böceklerin sert kabukları da onları, suya ve dışarıdan gelebilecek hasarlara karşı korumaktadır.
"Sclerotin" adı verilen bir protein tarafından güçlendirilmiş bu kabuklar, böceklere doğadaki en sert yüzeye sahip canlılar olma özelliğini verir. Ayrıca böceklerin kabuğunda bulunan kitin tabakası da rengini ve parlaklığını zaman içerisinde yitirmez.45
Bütün bunlar düşünüldüğünde inşaatlarda dış yüzeylerin kaplaması ve korunması için üretilecek sistemlerin böceklerinkine benzer bir tasarıma sahip olmasının çok daha kazançlı olacağı açıkça görülmektedir.
Lotus bitkisi (beyaz nilüfer), çamurlu ve kirli ortamlarda yetişir.Buna rağmen bitkinin yaprakları sürekli temizdir. Çünkü bitki, üzerine en ufak bir toz zerresi geldiğinde hemen yapraklarını sallar ve toz taneciklerini belli noktalara doğru iter. Yaprağın üzerine düşen yağmur damlaları da bu noktalara doğru yönlendirilir ve buradaki tozları süpürmesi sağlanır.
Lotus bitkisinin bu özelliği, yeni bir bina yüzeyinin tasarımı için araştırmacılara ufuk açmıştır. Bunun üzerine araştırmacılar Lotusun yaprağı gibi, yağmur sularını kullanarak üzerindeki kiri temizleyen bina yüzeyleri üzerinde çalışmaya başlamışlardır. Bu çalışmalar sonunda ISPO isimli bir Alman şirketi, Lotusan adı verilen cephe kaplama malzemesini üretmiştir. Asya ve Avrupa'da bulunan satış noktalarında piyasaya sunulan bu ürün için 'deterjana gerek kalmadan 5 yıl boyunca kendini temiz tutacağı garantisi' bile verilmiştir.
Doğadaki pek çok canlı, kendi yüzeylerini koruyan çeşitli özelliklere sahiptir. Şüphesiz ne Lotus bitkisinin yüzey yapısı ne de böceklerdeki kitin tabakası kendi kendine oluşmuştur. Hatta bu canlılar sahip oldukları üstün niteliklerden tamamen habersizdirler. Onları tüm özellikleriyle birlikte yaratan, Allah'tır. Bir Kuran ayetinde Allah'ın yaratma sanatı şöyle bildirilir:
O Allah ki, yaratandır, (en güzel bir biçimde) kusursuzca var edendir, 'şekil ve suret' verendir. En güzel isimler O'nundur. Göklerde ve yerde olanların tümü O'nu tesbih etmektedir. O, Aziz, Hakimdir. (Haşr Suresi, 24)
Bonn Üniversitesi'nden Dr. Wilhelm Barthlott, mikroskop altında yaptığı incelemelerde, en az temizlik gerektiren yaprakların en pürüzlü yüzeylere sahip olduğunu fark etmiştir. Dr. Barthlott, bunların en temizi olan Lotus bitkisi üzerinde, bir çivi yatağı gibi minik noktalar olduğunu buldu. Bir toz ya da kir zerresi yaprak üzerine düştüğünde, belli belirsiz biçimde bu noktalar üzerinde iki yana sallanır. Bir damla su, bu minik noktalar üzerinde yuvarlanınca zayıf şekilde tutunmuş olan kiri alıp götürür. Diğer bir deyişle, nilüfer çiçeği, kendi kendini temizleyen bir yaprağa sahiptir.47
Nilüfer çiçeğinin bu özelliği araştırmacılara ilham kaynağı olmuş ve LOTUSAN adı verilen, 5 yıl kendisini temiz tutacağı garantisi verilen dış cephe malzemesi üretilmiştir.
Yağmur damlasının lotusan yaprağı üzerindeki temizleyici etkisi
Su damlasının normal bir yüzeydeki etkisi
Lotusanla kaplı bir bina cephesinde su damlalarının temizleyici etkisi
Deniz yosunu
Otomobil firması Fiat, ZIC (Zero Impact Car) adlı yeni ürününü tasarlarken bitkilerdeki "kollara ayrılma" özelliğinden yararlanmıştır. Otomobilin ortasından bitkinin gövdesinde olduğu gibi küçük bir tünel geçiren tasarımcılar, bu tünele arabanın çalışması için gerekli enerjiyi sağlayan piller yerleştirmişlerdir. Arabanın koltukları ise resimdeki bitkiden esinlenilmiş ve bitkideki gibi doğrudan gövdeye (tünele) bağlanmıştır. Otomobilin tavanı ise deniz yosununun petekli yapısı gibi tasarlanmıştır. Bu yapı ZIC'e hem hafiflik hem de sağlamlık kazandırmıştır.
Otomobil sektörü gibi insanların en son teknolojinin rahatlıkla sergilenebileceği bir alanda, mühendislere ve tasarımcılara, doğada bulunan ve canlılığın var olduğu ilk günden beri hayat süren basit bir bitki ilham kaynağı olmuştur. Canlılığın tesadüfen oluştuğunu ve zaman içerisinde gelişerek hep daha iyiye doğru gittiğini savunan evrimciler için bu ve buna benzer olaylar, kabul edilmesi çok zor şeylerdir. Nasıl olur da akıl ve şuur sahibi insanlar, hiçbir zekası ve bilgisi olmayan, yerinden bile hareket edemeyen bitkilerden bir şeyler öğrenirler ve bunların uygulaması, o güne kadar o konuyla ilgili ortaya çıkan en verimli sonuçları verir? Bunlar elbette ki tesadüflerle açıklanması mümkün olmayan özelliklerdir ve yaratılışı kanıtlar. Bu yüzden de evrimciler için bir zorluktur.
Manduca güvesi ve tütün bitkisi
Herkes bitkilerin tehlikeden kaçamadıklarını, dolayısıyla düşmanlarına hemen teslim olduklarını zanneder. Ancak yapılan araştırmalar durumun hiç de zannedildiği gibi olmadığını ortaya çıkarmıştır. Tam tersine bitkiler de şaşırtıcı taktiklerle düşmanlarının üstesinden gelmektedirler.
Örneğin bitkiler, yapraklarını kemiren böcekleri uzaklaştırmak için kimi zaman zararlı kimyasallar üretirler, kimi zaman da bu böceklerle beslenen avcı böcekleri çeken kimyasal kokular yayarlar. Kuşkusuz her iki taktik de son derece akılcıdır. Nitekim tarımsal alanda yapılan faaliyetlerde bu savunma stratejisi, çok etkili bir yöntem olarak taklit edilmeye çalışılmaktadır. Almanya'daki Max Planck Kimyasal Ekoloji Enstitüsü'nde 'bitki savunması genetiği' alanında çalışmalar yapan Jonathan Gershenzon, bu akılcı stratejiyi gereği gibi taklit edebilirlerse, gelecekte tarımsal ilaçlamaların zehirsiz yapılabileceğini düşünmektedir.
Bazı bitkiler tırtıllar tarafından saldırıya uğradıklarında hemen bu tırtıllarla beslenen avcı böcekleri kendilerine çeken, uçucu bir kimyasal madde salgılar. Yardıma çağrılan böceklerin özelliği ise yumurtalarını tırtılların içine bırakmalarıdır. Tırtıldan habersiz onun içinde barınan ve yumurtadan çıkan larvalar ise, bu tırtıllarla beslenerek büyüme imkanı bulurlar. Böylece ekine zarar veren tırtıllar dolaylı bir strateji ile imha edilir.
Bitkinin, yapraklarının bir tırtıl tarafından yendiğini anlaması ise yine kimyasal yöntemlerle gerçekleşir. Bitki, yapraklarını kaybettiği için değil, tırtılın salyasındaki kimyasallara tepki olarak böyle bir alarm sinyali verir. Basitmiş gibi görünen bu olayda üzerinde durulması gereken pek çok konu vardır. Bunlardan birkaçını şöyle sıralayabiliriz:
Şüphesiz beyni bile olmayan bir bitkinin tehlikeler karşısında çözüm üretmesi, bir kimyager gibi kimyasal maddeleri tahlil etmesi, hatta bunu üretmesi, planlı bir strateji yürütmesi mümkün değildir. Kuşkusuz ki, dolaylı yöntemlerle bir düşmanı altetmek akıl gerektiren bir davranıştır. Bitkiyi bu özellikler ile yaratan Yüce Rabbimiz olan Allah'tır.
İşte günümüzde yaygınlaşan bu gibi biyomimetik çalışmalarıyla, Allah'ın canlılar üzerinde bize gösterdiği akıl hayranlıkla taklit edilmeye çalışılmaktadır.
Nairobi'de bulunan Uluslararası Böcek Fizyolojisi ve Ekoloji Merkezi'nden ve İngiltere'deki Toprak Ürünleri Araştırma Enstitüsü'den bir grup araştırmacı da bu konuda bir çalışma gerçekleştirmiştir: Çalışma ekibi mısır ve buğday tarlalarında ekinlerin arasına, tarım zararlılarını bu strateji ile ortadan kaldıran bir çim ekmiştir. Sonuçta, tarım ilacı kullanılmasına gerek kalmadan, zararlı canlıların etkisiz hale getirilmesinde %80 oranında başarı sağlanmıştır. Bitkiler üzerinde sergilenen bu benzersiz çözümün yaygınlaştırılması durumunda tarımda daha büyük aşamalar kaydedilecektir.
ABD Utah'ta yetişen bir tütün bitkisi ise Manduca güvesinin tırtılı tarafından saldırıya uğramaktadır. Bu zararlının yumurtaları Geocoris böceği tarafından sevilen bir yiyecek türüdür. Tütün bitkisinin salgıladığı uçucu kimyasal madde sayesinde Geocoris avcısı kimyasal salgılar aracılığıyla çağırılmakta ve yumurtalar bu böcek tarafından yendiği için tırtıl sayısının artışı engellenmektedir.
Manduca güvesinin tırtılı
Geociris
Rossella Racovitzae, Fiber optik kablolar
Gökleri ve yeri (bir örnek edinmeksizin) yaratandır. O, bir işin olmasına karar verirse, ona yalnızca "OL" der, o da hemen oluverir. (Bakara Suresi, 117)
Rossella Racovitzae adlı su süngeri bitkisi, insanoğlunun en yeni teknolojilerde kullandığı fiber optikten yapılmış uzantılara sahiptir. Fiber optik, ışığı iletmede çok etkili bir malzemedir. Lazer ışınlarının fiber optik kablosundan geçirilmesiyle elde edilen iletişim imkanları, normal malzemeden yapılmış kablodakilere göre olağanüstü bir artış gösterir. Öyle ki, saç teli kalınlığında 100 tane fiber optik kablonun yanyana getirilmesiyle oluşan kablo kesitinden 40.000 ayrı ses kanalı geçirilebilmektedir.
Antartika kıyılarının derinliklerinde yaşayan bu sünger türü, fotosentez yapabilmek için ihtiyacı olan ışığı, fiber optikten yapılmış olan diken şekilli uzantıları sayesinde kolayca toplamakta ve çevresi için de bir ışık kaynağı olmaktadır. Bu sayede hem kendisi hem de bu süngerin ışık toplama yeteneğinden faydalanan başka canlılar hayatta kalabilmektedir. Aynı ortamda yaşayan tek hücreli yosunlar da bu süngere yapışmakta ve yaşamaları için gereken ışığı elde etmektedirler.
Antartika kıyılarının 100 ila 200 metre derinliklerinde, kalın buz kütlelerinin altında neredeyse zifiri karanlık denebilecek bir ortamda yaşayan bir canlı için güneş ışığını yakalamak, canlının hayatını sürdürebilmesi açısından son derece büyük bir önem taşır. Canlının bu sorunu çözebilmesi, ışığı en etkili şekilde toplayan fiber optik ile donatılmış olması sayesinde mümkündür. Bilindiği gibi fiber optik teknolojisi son yüzyılın en ileri teknolojilerinden biridir. Japon mühendisler bu teknolojiyi güneş ışığını gökdelenlerin ışık almayan bölümlerine aktarmada kullanırlar. Gökdelenlerin çatısına yerleştirilen dev mercekler güneş ışığını fiber optik ileticilerin ucuna odaklar. Fiber iletkenler vasıtasıyla da güneş ışığı binanın en karanlık noktalarına kadar ulaştırılır.
Yüksek teknolojiye sahip endüstrilerde imal edilen fiber optik maddesinin böyle bir ortamda bu canlı tarafından 600 milyon yıldan beri kullanılması bilim adamlarını da hayrete düşürmektedir. Washington Üniversitesi'nde mekanik mühendisi olan uzman Ann M. Mescher bu gerçeği şöyle ifade eder:
Bu fiberleri düşük ısılarda, böylesine eşsiz mekanik ve mükemmel optik özelliklerle üreten bir canlının var olması olağanüstü etkileyicidir.
Washington Üniversitesi'nde profesör ve aynı zamanda metalurji mühendisi olan Brian D. Flinn ise bu süngerdeki üstün yapıyı şöyle tarif eder:
Bu, önümüzdeki 2 ya da 3 sene içinde (insanların) telekomünikasyona geçirecekleri türden bir şey değil, bu önümüzdeki 20 yılda ortalarda görülemeyecek bir şey.
Bütün bunlar bize, doğanın ve içindeki canlıların insanlar için çok sayıda örnek barındırdığını göstermektedir. Allah, tüm bunları insanların öğüt alıp düşünmeleri için yaratmıştır. Kuran'da şöyle buyrulmaktadır:
Şüphesiz göklerin ve yerin yaratılışında, gece ile gündüzün ardarda gelişinde temiz akıl sahipleri için gerçekten ayetler vardır. Onlar, ayakta iken, otururken, yan yatarken Allah'ı zikrederler ve göklerin ve yerin yaratılışı konusunda düşünürler. (Ve derler ki:) "Rabbimiz, Sen bunu boşuna yaratmadın. Sen pek Yücesin, bizi ateşin azabından koru. (Al-i İmran Suresi, 190-191)
Motorlu taşıtlara ilgi duyan hemen herkes bu araçların hareket etmesinde vites kutularının ve tepkili motorların ne kadar önemli bir yer tuttuğunu bilir. Fakat pek az kişi, doğada, bizim kullandıklarımızdan çok daha iyi tasarıma sahip vites kutularının ve jet motorlarının olduğundan haberdardır.
Vites kutusu, bir aracın hızı değiştiğinde motorun en verimli şekilde kullanılmasını sağlar. Doğadaki vites kutuları da otomobillerdekine benzer bir prensiple çalışır. Örneğin sinekler, normal bir uçuş sırasında, havada üç aşamalı hız sağlayan doğal bir vites kutusu kullanırlar. Bir sinek bu sistem sayesinde kanatlarını istediği hızda çırparak aniden hızlanabilir veya yavaşlayabilir.
Mürekkep balığı da, jet uçaklarındaki gibi jet tipi itme hareketini kullanır. Mürekkep balığının bedeninde, cep benzeri iki açıklık bulunur. Bu açıklıktan alınan su, kuvvetli kaslardan oluşan esnek bir torbaya alınır. Torbada arkaya doğru açılan bir kanal bulunur. Kasların kasılmasıyla kesedeki su büyük bir hızla kanaldan dışarı atılır. Bu canlı, düşmanlarından kaçarken 32 km/saat hıza kadar ulaşabilir, hatta bazen sudan dışarı sıçrayarak gemilerin güvertelerine düşebilir.55
Bir jet motoru bir ucundan havayı emer ve diğer ucundan çok daha büyük bir hızla dışarı bırakır. Harrier uçakları, motorlarının egzozlarından yüksek hızla çıkan havayı özel kanallar aracılığıyla yere doğru püskürtürler. Harrier bu sistem sayesinde dikey iniş-kalkış yapabilir. Uçak havalandıktan sonra egzoz çıkışı geriye doğru yönlendirilir./p>
Otomobillerde motordan elde edilen gücü tekerleklere aktarmak için çok sayıda dişli kullanılır. Düzgün bir sürüş, ancak dişliler kademe kademe kullanıldığı takdirde elde edilebilir. Arabalardaki oldukça ağır ve fazlaca yer kaplayan bu dişlilerin yerine, sineklerde sadece birkaç milimetrekareye sığan bir mekanizma vardır. Çok daha kullanışlı bu mekanizma sayesinde sinekler kanatlarını rahatlıkla çırpabilirler.
Mürekkep balığı, ahtapot ve Nautilus, suda hareket ederken tepkili motorlardaki gibi bir itiş gücü kullanırlar. Bu sistemin ne kadar etkili olduğunun anlaşılması için, bilim literatüründeki adı Loligo Vulgaris olan kalamarın suyun içindeki hızının saatte 30 kilometreyi aştığını söylememiz yeterli olacaktır.
Bu konudaki en benzersiz örneklerden biri olan Nautilus, ahtapot benzeri bir deniz canlısıdır ve jet motoru ile çalışan bir gemi gibidir. Başının altındaki bir tüp ile suyu içeri alır ve sonra da geri püskürtür. Böylece oluşturduğu akım bir yöne doğru hareket ederken Nautilus da diğer yöne doğru hareket eder.
Bu canlıların bilim adamlarını imrendiren bir diğer özellikleri de, sahip oldukları doğal tepkimeli motorların, denizin derinliklerindeki son derece güçlü basınçlardan etkilenmemesidir. Ayrıca hareketi sağlayan sistemleri hem sessiz hem de oldukça hafiftir. Nitekim Nautilusun yaratılışındaki bu üstünlük, denizaltılar için model oluşturmuştur.
Bir istiridye, deniz yıldızı tarafından tehdit edildiğinde kabuğunun iki yakasını aniden kapatır. Böylece bir miktar suyu jet hareketi oluşturacak şekilde dışarı atar ve bedenini ileri fırlatmış olur.
Bilimsel adı Ecballium elaterium olan acı kavun bitkisi, tohumlarını meyvelerindeki şiddetli bir patlama ile etrafa dağıtır. Bu patlama jet tipi bir hareketle gerçekleştirilir. Sapından kurtulup düştüğünde meyvenin içindeki basınç dengesi bozulur ve meyvenin 57
Nautilus
1. Denizaltı Su Yüzeyinde
2. Denizaltı Su Altinda
3. Su Dolu Tanklar
Denizaltılar su yüzeyine çıkmak ya da dibe dalmak için özel bölmeler kullanırlar. Bu bölmeler Nautilus'taki bölmelerle aynı işi görür. Bölmeler hava ile dolu olduğunda denizaltı su yüzeyinde durur. Bölmedeki hava su ile değiştiğinde denizaltı dibe batar. Uygun miktarda suyun bölmelere basılması ya da boşaltılması sağlanarak denizaltının su altındaki seyri ayarlanır.
Denizaltılarda bulunan dalış tankları suyla dolunca gemi sudan daha ağır hale gelir ve dibe dalar. Eğer tanktaki su, basınçlı hava ile boşaltılırsa denizaltı tekrar su yüzüne çıkar. Nautilus da hareket ederken aynı yöntemi kullanır. Nautilusun vücudunda 19 cm. çapında, salyangoz kabuğu biçiminde spiral bir organ vardır. Bu organda birbiriyle bağlantılı 28 tane "dalış hücresi" bulunur. Ancak bu, suyun boşaltılması için yeterli değildir; takviye olarak basınçlı havaya da ihtiyaç vardır. Peki ama Nautilus suyu boşaltmak için gerekli basınçlı havayı nereden bulur?
Nautilusun vücudunda biyokimyasal yolla özel bir gaz üretilir ve bu gaz, kan dolaşımı ile hücrelere aktarılarak hücrelerden suyun çıkması sağlanır. Bu sayede Nautilus avlanırken ya da düşmanlarından kaçmak istediğinde daha derine inebilir veya yüzeye çıkabilir.
Bir denizaltı sadece 400 m. dibe dalabilirken Nautilus için 450 m. derinliğe dalmak son derece kolaydır.
Bu, pek çok canlı için oldukça tehlikeli bir derinliktir. Ancak buna rağmen Nautilus bu durumdan hiç etkilenmez, kabuğu basınçtan parçalanmaz ya da vücudunda herhangi bir zararlı etki görülmez.
Burada dikkat edilmesi gereken çok önemli bir nokta daha vardır. Nautilus, yaratıldığı ilk günden beri bu sisteme sahiptir. Peki, 450 metre derinlikteki basınca dayanıklı bu özel kabuk yapısını Nautilusun kendisi tasarlamış olabilir mi? Ya da vücudundaki suyu boşaltmak için basınçlı hava elde edebileceği gazı kendisi bulmuş olabilir mi? Şüphesiz Nautilusun ne kendi kendine gaz üretecek bir kimyasal tepkimeyi bilmesi, ne de bu tepkimeyi gerçekleştirecek yapıyı kendi vücudunda kurması ya da suyun basıncından dolayı üzerinde oluşan tonlarca yüke dayanacak bir kabuk tasarımı yapması kesinlikle mümkün değildir. Bu, herşeyi örneksiz yaratan Allah'ın eseridir. Kuran'da Allah'ın Bedi (örnek edinmeksizin yaratan) sıfatı şöyle haber verilir:
"Gökleri ve yeri bir örnek edinmeksizin yaratandır…" (Enam Suresi, 101)
Denizaltıların dalış tekniği balıkların kullandığı tekniğe de benzer: Balıklar suyun icine dalış ya da yüzeyine doğru çıkış yapmak için suya göre yoğunluklarını kontrol edebilirler. Balıklarda içini hava ile doldurdukları bir yüzme kesesi bulunur. Bu kesedeki havanın miktarının değişmesi, balığın suya göre olan yoğunluğunda da değişime yol acar. Balık böylece dibe dalabilir veya yukarı çıkabilir. Balıklar bazen bu kesede oyle bir ayarlama yaparlar ki, su yüzeyinin altında batmadan ya da yükselmeden sabit durabilirler.
Denizaltıların su içindeki seyri özel kumanda sistemleri ile sağlanır. İnsan zekasının ürünü olan bu sistemler uzun mühendislik çalışmaları sonucunda oluşturulmuştur. Aklını kullanabilen hiç kimse bunların tesadüfen oluştuğunu iddia edemez. Ancak evrimciler, denizaltının yapabildiği işin aynısını yapabildiği halde Nautilius'un tesadüfen oluştuğunu iddia edebilmektedirler. Kuşkusuz böyle bir iddianın gerçek olamayacağı açıktır.
Nautilus 'un bu 100 milyon yıllık fosili hayvanın hiç evrim geçirmediğinin delillerindendir. Allah bu hayvanı sahip olduğu mükemmel tasarımla, eksiksiz olarak bir anda yaratmıştır.
Ses, havada ve suda dalgalar halinde yayılır ve bu dalgalar herhangi bir cisme çarparsa geri döner. Eğer yeterli bilgi ve teknolojiye sahipseniz, dönen dalgalardan bu cisim hakkında çeşitli bilgiler edinebilirsiniz: Dalga kaynağının sizden ne kadar uzakta olduğu, büyüklüğü ya da ne yöne, hangi hızla hareket ettiği gibi...
Ses ve basınç dalgalarını kullanarak objelerin yerini tespit etme teknolojisi 20. yüzyılda geliştirilmiştir. Bu teknoloji, her ne kadar savaşta kullanılmak amacıyla geliştirilmişse de, günümüzde batık gemilerin yerlerini belirleme ya da deniz dibi haritalarının çıkarılması gibi amaçlarla kullanılmaktadır. Ancak doğadaki canlılar bundan milyonlarca yıl önce, henüz insanlar bu sistemleri keşfetmemişken, etrafa yayılan ses dalgalarını kullanıyor ve bu sayede yaşamlarını sürdürüyorlardı.
Örneğin yunuslar, yarasalar, balıklar ve güveler yaratıldıkları ilk andan beri "sonar" adı verilen bu sisteme sahip olan canlılardandır. Üstelik bu sistemler bugün bizim kullandıklarımızdan çok daha duyarlı ve kullanışlıdır.
Sonar sistemi, denizin içindeki denizaltıları tespit etmek için vazgeçilmez bir yöntemdir. Bu yüzden Amerikan Savunma Bakanlığı, yarasa sonarındaki çalışma prensiplerini kendi sonarlarına uygulamak için harekete geçmiştir.
Amerika'nın ünlü bilim dergilerinden biri olan Science'ın verdiği bir habere göre, ABD Savunma Bakanlığı bu proje için özel bir ödenek dahi tahsis etmiştir. Yarasaların, zifiri karanlıkta kolayca yön bulmalarının sahip oldukları sonar sistemi sayesinde gerçekleştiği uzun zamandır biliniyordu. Son olarak araştırmacılar, bu sonar sisteminin yeni bazı sırlarını keşfetmişlerdir. Buna göre, kahverengi böcekçil yarasa (Epesicus fuscus) saniyede 2 milyon üst üste binmiş ses yankılanmasını işleme sokma yeteneğine sahiptir. Hem de bu yankıları sadece 0.3 milimetrelik bir hassasiyet farkıyla algılayabilir. Bu rakamlar ise, yarasa sonarının insan yapımı sonarlardan yaklaşık üç kat daha hassas olduğunu göstermektedir.
Yarasaların sonar sistemli uçuş yetenekleri, bize karanlıkta uçuş hakkında çok şey öğretmektedir. Kızılötesi termal görüntüleme sistemli kameralar ve ses-üstü dalgaları algılayan dedektörlerle yapılan araştırmalar, yarasaların gece av uçuşları hakkında çok daha kapsamlı bilgi edinme fırsatı vermiştir.
Yarasalar yerden havalanan bir böceği havada uçarken kapabilirler. Bazı yarasalar avlarını yakalamak için onları çalılıkların içinde bile takip ederler. Yansıyan ses dalgalarını kullanarak gece gökyüzünde vızıldayan bir sineğin üzerine atılmak oldukça zordur. Bir de böceğin çalılıkların arasında uçtuğunu, etraftaki bütün yapraklardan ses dalgalarının yansıdığını düşünürseniz, yarasanın ne kadar büyük bir iş başardığını daha iyi anlayabilirsiniz.
Böyle bir durumda yarasalar sonar seslerini azaltırlar. Bunun sebebi, muhtemelen, çevredeki bitkilerden gelen ses yansımalarının kafa karıştırmasını önlemektir. Fakat yarasaların, cisimleri ayrı ayrı algılayabilmesi için bu yöntem tek başına yeterli değildir. Üst üste gelen ekoların geliş zamanları ve yönleri de ayırt edilmelidir.
Yarasalar su üstünde uçarken su içmek için veya avlarını yerden yakalamak için de sonar sistemini kullanırlar. En usta manevraları ise bir yarasanın diğerini kovaladığı durumlarda gösterirler. Yarasaların bu başarıyı nasıl elde ettiklerinin anlaşılması sonar, uçuşlar ve tespit cihazları başta olmak üzere pek çok teknolojik ürünün üretiminde kolaylık sağlayabilir. Ayrıca yarasaların çok yüksek frekanslı sonar sistemleri, bugün mayın arama teknolojisinde de taklit edilmektedir.
Boeing 767 uçaklarında konuşlandırılan ve AWACS olarak adlandırılan sistemler, sahip oldukları gelişmiş radar donanımı ile erken uyarı ve hedef kontrol amacıyla kullanılır.62 Karada ve havada oldukça etkili olan AWACS, denizde sadece deniz üstündeki gemileri fark edebilir; denizaltılar söz konusu olduğunda ise aynı başarıyı gösteremez, yani deniz dibi AWACS'ın etki alanı dışındadır.63
Bulldog yarasası, su içindeki hedefleri tespit etme konusunda AWACS'tan üstündür. Bu yarasa, sonar sisteminin yardımıyla balık avlayabilmektedir. Bu özellikleri nedeniyle onu hem avcı hem de erken uyarı özelliklerini beraberinde barındıran üstün bir savaş uçağı gibi düşünmek hiç de abartılı olmaz. Bulldog yarasası su yüzeyine yakın seyreden balığı, sonarı ile tespit ederek dalışa geçer. Yarasanın ayakları balık avı için ideal bir tasarıma sahiptir. Tırnakları bir jilet kadar ince ve keskindir. Avına yaklaştığında ayaklarını suya daldırır. Tırnakların ince yapısı sayesinde su direncinin olumsuz etkisi ile karşılaşmaz. Keskin, sivri uçlu ve iri tırnaklar, avı kavramak için büyük yarasaya bir avantaj sağlar.64
Bazı güve çeşitleri yaydıkları yüksek frekanslı sesler ile yarasanın yer belirleme sistemini karıştırırlar. Böylece yarasa, güvenin yerini tespit edemez dolayısıyla da onu avlayamaz. 65 Bugün ABD ordusunun kullandığı EA-6B Prowler adlı uçaklar, güvenin yaptığı işi taklit eder. Bu uçak sahip olduğu elektronik donanım sayesinde düşman radarlarını bozarak hedef tespiti yapmasını engeller. EA-6B Prowler aynı zamanda düşmanın haberleşme sistemlerini de sabote edebilir.66
EA-68 Prowler
Görüldüğü gibi canlılardaki özellikler çok geniş bir alanda insanlara fayda sağlamaktadır. Allah Kuran'daki bir ayette hayvanlardaki faydalara şöyle dikkat çeker:
Gerçekten hayvanlarda da sizin için bir ders (ibret) vardır; karınlarının içinde olanlardan size içirmekteyiz ve onlarda sizin için daha birçok yararlar var… (Müminun Suresi, 21)
Yunuslar, başlarında bulunan "melon" (kavun) adındaki özel bir organdan sıklığı saniyede 200 bin titreşime ulaşan ses dalgaları yollar. Bu canlı, kafasını hareket ettirerek dalgaları istediği tarafa doğru yönlendirebilir. Yayılan ses dalgaları katı bir cisme çarptığında yansıyarak yunusa geri döner. Balığın ağzının alt tarafı alıcı görevi görür. Alınan dalgalar önce iç kulağa, oradan da beyne gönderilir. Bu veriler oldukça hızlı olarak yorumlanır. Bu yorumlama sayesinde son derece hassas ve kesin bilgiler elde edilir. Yunus, bu sayede ses dalgasının çarptığı objenin hareket yönünü, hızını ve büyüklüğünü ayrıntılarıyla belirleyebilir.
1. Yansıyan ses dalgaları
2. Yollanan ses dalgaları
Her şeyin melekutu (hükümranlık ve mülkü) elinde bulunan (Allah) ne yücedir. Siz O'na döndürüleceksiniz.(Yasin Suresi, 83)
Bilim adamları ve mühendislerin, doğadaki sonar tasarımlarından yola çıkarak yaptıkları birçok robot vardır. Bunlardan biri de K-Team firmasının ürettiği robottur. 6 adet sonar ünitesini kullanan "koala" adlı bu robot, uzaktan kumanda ile idare edilen keşif robotu olarak tasarlanmıştır.
Yunusun dalgaları yorumlama sistemi o kadar üstündür ki, bir balık sürüsü içindeki tek bir balığı bile izleyebilir.68 Hatta zifiri karanlıkta suda kendinden 3 km. uzakta duran iki ayrı metal parayı birbirinden ayırt edebilir.
Günümüzde, gemilerde ve denizaltılarda yön ve hedef tayininde SONAR70 adı verilen cihaz kullanılır. Sonarların çalışma prensibi, yunusların ses dalgalarını kullanma sistemiyle aynıdır.
ABD'de Yale Üniveritesi'nde keşif amacı ile kullanılacak bir robot geliştirilmiştir. Robotta, profesör ve aynı zamanda elektrik mühendisi olan Roman Kuc'un yunusların sonarını taklit ederek yaptığı sonar sistemi kullanılmıştır. Bu başarısına rağmen 10 yıldır sesüstü algılayıcılar ve robot teknolojisi üzerine çalışan profesör Kuc doğaya dikkat çekerek şöyle demektedir:
Roman Kuc
Sonar yapımı için doğaya daha yakından bakmalıyız, gözden kaçırdığımız herhangi bir şey olabilir.
Birisi size ses dalgalarının deniz suyunda saniyede 1500 m. hızla ilerlediğini söylese ve şöyle bir soru sorsa: İçinde bulunduğunuz bir denizaltıdan bir gemiye gönderilen ses dalgaları 4 saniye sonra geri geliyorsa gemi ne kadar uzaktadır?
Yapacağınız hesaplama sonucunda bulacağınız sonuç, 3 km. olacaktır. Yunuslar da benzer hesaplamaları büyük bir rahatlıkla yaparlar. Ancak elbette ki yunuslar ne ses dalgalarının sudaki yayılma hızını, ne çarpma işlemini ne de bölme yapmayı bilirler. Bu da bize, bütün bu işlemlerin yunuslar tarafından yapılmadığını, onların sadece Allah'ın kendilerine emrettiği şekilde hareket ettiklerini açık olarak gösterir.
Evrimciler, yunuslardaki sonarın çeşitli nedenlerle meydana gelen bir dizi değişiklik sonucu ortaya çıktığını iddia eder.72 Bu iddia, bir rafta duran binlerce elektronik devre parçasının rüzgar ya da yer sarsıntısı gibi nedenlerle biraraya gelerek bir sonar devresini oluşturduğunu söylemekle aynı anlamda ve en az onun kadar saçmadır.
En gelişmiş sonarların başında, cihazdan gelen verileri yorumlayabilecek özel eğitim görmüş operatörler bulunur. Oysa evrimcilerin insandan daha ilkel olduğunu kabul ettikleri yunuslar, hiçbir zaman böyle bir operatöre ihtiyaç duymazlar.
Bilimsel araştırmalar ilerledikçe canlıların şaşırtıcı özelliklerine daha yakından şahit olmaktayız. Söz konusu özellikler günlük hayatımızda iş yerlerinden hastanelere kadar pek çok yerde yaşanan çeşitli sorunlara çözümler sunmaktadır. "Nike" şirketinin 'Evrensel İş Olanakları' Genel Müdürü Darcy Winslow bu konuda şunları dile getirir:
Sunmak zorunda olduğumuz ürün performansının karakteristikleri için doğal dünyanın bizlere sağladığı teknolojik çözümler gerçekten sınırsız. Biyomimikri hala keşfetme, yenileme ve yaratıcılık gerektiriyor ancak bir biyolog gibi düşünerek ya da bir biyologla birlikte çalışarak değişik sorular sormayı ve doğaya ilham ve öğrenme fırsatları yaratmak için bakmayı öğrenmeliyiz.
Birçok firma artık Winslow'un söylediklerine paralel bir çalışma stratejisi izlemektedir. Dolayısıyla artık bir biyolog ile elektronik mühendisini ya da mekanik uzmanını beraber çalışırken görmek mümkündür.
Nitekim yarasaların sonarından etkilenen mühendisler, mini bir sonar ünitesini bir gözlüğe monte ettiler. Gözlüğü kullanan görme özürlüler belli bir alışma süresinden sonra engellere çarpmadan yürüyebilmekte hatta bisiklete bile binebilmekteler. Ancak gözlüğün tasarımcıları bunun hiçbir zaman insan gözünün yerini tutamayacağının ya da yarasadaki kadar kullanışlı olmayacağının farkındalar.
Konusunda uzman insanların kopyasını bile yapmakta zorlandıkları bu kusursuz özelliklerin yarasada tesadüfen oluşmuş olması elbette ki imkansızdır. Burada unutulmaması gereken bir konu da özellik olarak adlandırdığımız şeylerin aslında içiçe geçmiş birbiriyle bağlantılı kompleks sistemler olduklarıdır. Bu sistemlerin tek bir parçasının dahi eksik olması tüm sistemin işe yaramaz hale gelmesi demektir. Örneğin, yarasalar ses dalgalarını yaysalar ama yaydıkları dalgaları geri algılayıp değerlendiremeseler sonar sistemi diye bir şey olmayacaktır.
Canlılardaki bu eksiksiz ve kusursuz tasarıma bilim literatüründe "indirgenemez komplekslik" adı verilir. Yani daha basite indirgendiğinde anlamsız ve işlevsiz hale gelecek bir tasarım... Canlı organizmaların tümünde ve tüm sistemlerinde var olan bu "indirgenemez komplekslik" özelliği evrim teorisinin 'basitten gelişmişe kademeli evrim' şeklindeki temel mantığını yerle bir etmektedir. Çünkü, son haline gelmeden hiçbir işe yaramayacak bir sistemin milyonlarca yıl varlığını koruyup tamamlanmayı beklemesinin hiçbir mantığı yoktur. Bir canlı ancak bütün sistemleri eksiksiz olduğunda yaşamını ve neslini sürdürebilir. Sistemdeki parçaların zamanla sözde bir evrimle tamamlanmasını beklemek gibi bir lüks de yoktur. Bu da tüm canlıların yeryüzünde ilk olarak ortaya çıktıklarında şimdiki gelişmiş ve eksiksiz yapılarıyla yaratılmış olduklarının açık bir delilidir.
Hayvanları da diğer tüm canlılar gibi üstün bir yaratılışla Allah var etmiştir. Bir ayette bu yaratma şöyle haber verilmektedir:
Ve hayvanları da yarattı; sizin için onlarda ısınma ve yararlar vardır ve onlardan yemektesiniz. (Nahl Suresi, 5)
Edinburgh Üniversitesi'ndeki araştırmacılar bir yarasa gibi ekolokasyon ile yolunu bulabilecek akıllı kulaklara sahip bir robot üzerinde çalıştılar. Üniversitenin enformatik bölümünden Jose Carmena ve çalışma arkadaşları yaptıkları bu robota "RoBat" adını verdiler. RoBat'e tıpkı ağız görevi gören bir ses kaynağı ve iki sabit ses algılayıcısı konuldu. Daha sonra robotun ağzı tıpkı yarasadaki gibi yankılanma yapacak ses dalgalarını (ekolar) yaymak üzere düzenlendi.
RoBat'in tasarımında, ekoları en iyi şekilde kullanmak için yarasanın başka özellikleri de göz önüne alındı. Yarasalar yansıtılan ses dalgalarının frekans aralığını belirlemek için kulaklarını oynatır ve bu şekilde önlerindeki engelleri rahatlıkla aşıp, avlarını bulup yakalarlar. RoBat de, yarasadaki gibi kusursuz bir mekanizmaya sahip olması için ses üstü algılayıcılarla donatıldı.
Doğadan ilham alınarak hazırlanan bu tip ses algılayıcıları sayesinde bir gün yolların daha güvenilir hale geleceği düşünülüyor:
Nitekim, Mercedes, BMW gibi otomobil üreticileri, geri viteste faaliyete geçen ses üstü algılayıcılar kullanmaktadırlar. Şoför, bu algılayıcılar sayesinde arkasında duran araba ya da cisme ne kadar yaklaştığını öğrenebilmektedir.
Batı Afrika fil balığı (Gnathonemus petersii), Afrika'nın 27oC'lik sıcak ve çamurlu sularında yaşar. Anavatanı Nijerya olan 10 cm. boyundaki bu balık, çamurlu sularda gözlerini çok az kullanır. Yolunu, kuyruk tarafındaki kaslarından düzenli olarak yaydığı elektrik sinyalleri ile bulur. Normalde, dakikada 300-500 sinyal yayar. Fakat suyun kirlilik oranı arttıkça dakikada ürettiği sinyal sayısı 1.000'i aşabilir.
İngiltere'nin Bourmounth şehrinde kirliliği ölçmek için, fil balıklarından faydalanılarak yapılan dedektörler kullanılmaktadır. Bourmounth'daki bir su şirketi, Stour nehrinden aldığı su örneklerini 20 fil balığının kontrolüne vermiştir. Her balık nehirden gelen su ile doldurulmuş bir akvaryumda yaşatılmaktadır. Akvaryumlardaki alıcılar sinyalleri alıp bağlı oldukları bilgisayarlara iletmektedir. Eğer su kirli ise balığın artan sinyalleri tespit edilerek bilgisayar aracılığı ile alarm verilmektedir.
Elektrikli yılan balığı "Electrophorus electricus" Amazon nehrinde yaşamaktadır. Boyu 2 metreyi bulan bu balığın gövdesinin üçte ikisi elektrik üreten organik plakalarla kaplıdır. Balık, sayısı 5.000-6.000 kadar olan bu plakalar sayesinde 550 volt/2 amperlik bir elektrik üretir. Balıktan yayılan bu elektriğin şok etkisi, balığın 2 m. uzağındaki canlıları bile öldürecek kadar şiddetlidir.76
Balığın bu denli büyük bir enerjiye sahip olması gerçekten büyük bir yaratılış mucizesidir. Sistem son derece komplekstir ve "aşama aşama" gelişmesi gibi bir ihtimal de söz konusu değildir. Çünkü balığın elektrik sistemi tam olarak işlemediği sürece, ona hiçbir avantaj sağlamayacaktır. Bir başka deyişle, bu sistemin her parçası aynı anda kusursuz bir şekilde yaratılmıştır. Bilim adamları elektrikli yılan balığının sahip olduğu bu savunma mekanizmasının benzerlerini taklit etmektedir ve günümüzde bu balığınkine benzer elektrikli savunma silahları kullanılmaktadır.
Cisimlerin yerini tayin ederken fil balığının beyninin çalışma prensibi, insan beyninin uzaklığı hesaplamada kullandığı prensibe benzer. İnsan, uzaklığı ses dalgaları arasındaki mesafeye ve dalgaların nesneden kulağa gelinceye kadar geçen süreye göre belirler. Bu saptama saniyenin 15 binde biri kadar bir zamanda yapılır. Fakat California Üniversitesi'nden araştırmacı G. Rose ve Heilingenberg, balığın bu hesaplamaları saniyenin 400 milyarda birinde yaptığını bulmuştur. Rose, balığın küçük ve basit bir yapıya sahip gibi görünmesine rağman gerçekte, "içinde süper bilgisayarların da özü yerleştirilmiş harika bir balık" olduğunu belirtmektedir. "
Elektrik sinyallerini, bir cismin yerini tespit amacıyla ya da haberleşme için kullanabilirsiniz. Ancak bunun için büyük bir bilimsel birikime ve ileri bir teknolojiye sahip olmanız şarttır. Nitekim günümüzde bile, bu seviyeye ulaşmış ülkelerin sayısı son derece azdır. Oysa bazı elektrikli balıkların vücutlarında etrafa sürekli olarak elektrik sinyalleri yayan, bir yandan da bu sinyallerin çarptığı cisimleri yorumlayan organik bir radar vardır. Balık bu radar sayesinde çevrelerindeki nesnelerin büyüklüğü, iletkenliği ve hareketi hakkında bilgiler edinebilir. Ayrıca aynı sistemle karşısındaki başka bir elektrikli balığın cinsiyeti ve erginlik durumu hakkında bilgi edinebilir, onu çiftleşmeye davet edebilir veya korkutabilir.77 İnsanların kullandıkları radarların ve haberleşme sistemlerinin ne denli kompleks aygıtlar olduklarını düşündüğümüzde, balığın vücudundaki yaratılışın harikalığı daha açık olarak ortaya çıkar.
En kusursuz uçuş makinesi hangisidir? Skorsky helikopteri mi, Boeing 747 yolcu uçağı mı, yoksa F-18 savaş uçağı mı?
Reader's Digest dergisinde konu olarak kuşları ele alan bilimsel bir makale aşağıdaki cümle ile başlayarak bu sorunun cevabını şöyle vermektedir:
Aeorodinamik bir harika olan kuşla kıyaslandığı zaman en gelişmiş hava aracı bile sadece kabataslak bir kopyadan öteye geçmez.
Kuşlar mükemmel uçuş makineleridir. Bir aracın uçabilmesi için hafif olması gereklidir. Bu, kanadı tutturmak için kullanılan vida ve perçinler için de geçerli bir kuraldır. İşte bu nedenle insanlar uçak imalatında hep özel malzemeler kullanmaya çalışırlar: Sert ama hafif, aynı zamanda da darbelere dayanıklı. Bütün çabalara rağmen bu konuda kuşlara yaklaşamadığımızı söyleyebiliriz. Siz hiç iniş sırasında infilak eden ya da parçalanan bir kuş gördünüz mü? Ya da uçarken gövdeye olan bağlantıları zayıfladığı için kanadı düşen bir kuş?
Kuşlardaki kusursuz tasarımların havacılığın gelişmesinde çok büyük etkileri vardır. Nitekim uçağın mucidi olarak kabul edilen Wright kardeşler, Kittyhawk adındaki uçaklarının kanatlarını yaparken akbaba kanatlarının tasarımını örnek almışlardır.
Sol: Kuşlar, esneklik ve hareketlilik konusunda da uçaklardan oldukça ileridir. Bunun için bir kuşun boynunu incelemeniz yeterli olur. Boyun, gaganın, vücudun herhangi bir kısmına kolaylıkla erişmesini sağlar. Kuş bu sayede uçuş için en önemli unsur olan tüylerin bakımını rahatlıkla yapabilir. Ayrıca flamingolarda olduğu gibi uçuş sırasında dengeyi de sağlar. İnsanlığın yaklaşık 100 yıldır bu konuda elde ettiği ilerleme, Concorde uçağının yukarı aşağı hareket eden burnu olmuştur. Üstelik Concorde'daki bu tasarım da yunuslardan kopya edilmiştir.
Sağ: Uçaklar kuşlardan çok daha hızlı uçar. Ama uçuş sırasında da atmosfere çok yüksek ısı salarlar. Oysa kuşların vücudundaki hava dolaşımı tıpkı bir soğutma sistemi gibidir. Bu nedenle kuşları, uçakları vurduğunuz gibi ısı güdümlü bir roket ile vuramazsınız.
İçi boş hafif kemikler, bu kemikleri hareket ettirecek güçlü göğüs kasları, havada tutunmayı sağlayacak nitelikte tüyler, aerodinamik kanatlar, yüksek enerji ihtiyacını karşılayacak bir metabolizma… Kuşların bir tasarım ürünü olduğunu açıkça gösteren tüm bu özellikler onlara havada büyük bir hareket kabiliyeti verir.
Hiç uçak kanadının bir parçası olan "flap"ın (uçağın kanatlarının arkasında bulunan, yukarı aşağı hareket ederek uçağın alçalıp yükselmesini sağlayan bir parça) bozulduğunda kendini onardığını ya da kendi kendine yenisi ile değiştiğini duydunuz mu? Oysa kuşların uçaktaki flaplar ile aynı görevi yapan tüyleri, Allah'ın onlara verdiği kusursuz sistem sayesinde bunu yapabilir.
Gerçekten hayvanlarda da sizin için bir ders (ibret) vardır. (Müminun Suresi, 21)
Eğer bir tüyü elinize alıp parça parça çekerseniz, güçlü bir direnç ile karşılaşırsınız. Çünkü tüyler "barbicel" adı verilen küçük küçük çengeller ile birbirlerine sıkıca kenetlenmiştir. Hatta koparıldıktan sonra dahi tüyün kendi kendini tamir gücü vardır. Parçalanmış tüyleri biraraya getirip uzunlamasına birkaç kere okşamak, "barbicel"lerin tüylerinin tekrar birbirine kenetlenmesini sağlamak için yeterlidir
Kuşlar daha pek çok bakımdan da uçaklardan çok ileridir. Örneğin kuzgun, güvercin gibi kuşlar havada takla atabilirken, arı kuşları havada asılı kalabilirler. Havada uçarken fikir değiştirerek ani bir hareketle bir dala konabilirler. Uçaklar ise bu tarz manevralar yapamazlar.
Daha uçakların keşfedilmediği zamanlarda bile kuşların uçmak için kullandıkları kusursuz tasarım birçok mucidi etkilemiştir. Öyle ki, 19. yüzyılda bazı kimseler evlerinde yaptıkları kanatları kollarına sıkıca bağlayarak binaların tepesinden kendilerini boşluğa bırakıp kuşların hareketlerini taklit etmeye çalışmışlardır. Tahmin edilebileceği gibi, bu kişilerin uçmak için sadece kanatların yeterli olmadığını anlamaları fazla uzun sürmemiştir.
Rus pilotu Victor Pougatchev'in, Su-27 uçağıyla yaptığı "kobra" adı verilen manevra, havacılık tarihine geçmiştir. Bu hareket Pougatchev'in uçağının havada bir an duraksayarak düşman uçağının arkasına geçmesine imkan tanımaktadır.82 Pougatchev'in bu manevrası, bir arı kuşunun yaptıklarının yanında oldukça basit kalmaktadır.
O günlerden bugüne kadar yaklaşık 200 yıl geçti. İnsanlığın bilimsel tecrübeleri ve araştırma-geliştirme teknikleri oldukça ilerledi. Ancak bazı kişiler hala, en az bu mucidler kadar akıldan uzak ve boş iddialarda bulunabiliyorlar. Buna göre, sürüngenler zaman içinde aşama aşama gelişerek kuş haline gelmişlerdir. Kademeli evrim olarak isimlendirilen bu hayali mekanizmanın hiçbir gerçekliği yoktur. Kuşların sürüngenlerle en ufak bir benzerliği olmayan kemik ve kas yapıları, tüyleri, aeorodinamik kanatları ve metabolizmaları vardır. Kara canlılarından tamamen farklı bir yapıya sahip olan kuşların hiçbir vücut mekanizması, iddia edildiği gibi kademeli evrim modeli ile açıklanamaz.
Kuşlar uçmak için tasarlanmış bir vücut yapısına sahiptir. Bunun için kuşların boyun yapısına bakmak yeterlidir. Bir serçenin boynu 14 omurdan oluşurken bu sayı zürafalar için de 14'tür. Kuş bu sayede uçuş sırasında vücudunu rahatlıkla dengeleyebilir, avlanabilir ve tüylerinin bakımını yapabilir.
Kuşlar uçarken kanatlarını maruz kaldıkları şartlara göre en iyi biçimde kullanırlar. Sıcaklık ve rüzgar gibi değişkenlere göre gerekli değişiklikleri otomatik olarak yapacak bir şekilde yaratılmış oldukları için de en iyi uçucu olarak kabul edilirler. Şu anda uçak teknolojisine yön veren firmalar kuşların bu yaratılış özelliklerinden faydalanarak projeler yapmaktadırlar.
Baykuşlar, avlarını, geceleri onların farkında olmadıkları bir anda yakalamak için üzerlerine sessizce çullanırlar. Virginia'daki NASA Langley Araştırma Merkezi'ndeki araştırmacıların belirttiğine göre birçok kuşun uçuş tüylerinin belirgin, düzgün şekilli kenarları olmasına karşın baykuşların uçuş tüyleri, havanın kanat üzerinden geçerken ortaya koyduğu türbülansı -ve böylelikle gürültüyü de- azaltacak şekilde yumuşak saçaklara sahiptir. Askeri tasarımcılar baykuş kanatlarını taklit ederek hayalet uçakları olduklarından daha da gizli hale getirebilmeyi umuyorlar. Baykuşlardaki tasarım sayesinde radarlar tarafından görülmeyen uçakların hiç duyulamayacak kadar sessiz olması hedefleniyor.86
Kuşların kanat yapıları bir tasarım harikasıdır. Kuş, aynı kanat yapısıyla hem sıcakta hem de soğukta uçabilir. Rüzgarda ya da durgun havada da aynı kanatlarla uçar. Kuş değişen şartlara karşı kanadını en başarılı biçimde kullanarak uçabilir. Kuşların bu üstün özelliği bilim adamlarının dikkatini çekmiş ve değişen şartlara göre biçim değiştirebilen kanatlar yapmayı amaçlamışlardır. Resimde bu amaçla tasarlanan bir kanadın kesiti görülüyor.
(Yine) Bilmez misin ki, gerçekten göklerin ve yerin mülkü Allah'ındır. Sizin Allah'tan başka veliniz ve yardımcınız yoktur. (Bakara Suresi, 107)
NASA, Boeing şirketi ve ABD Hava Kuvvetleri, uçağa yerleştirilmiş bir bilgisayardan gelen bilgilere göre biçim değiştirme yeteneği taşıyan, cam liflerden yapılmış esnek bir kanat tasarlamışlardır. Söz konusu bilgisayar aynı zamanda uçuş koşullarını (sıcaklık, rüzgar kuvveti) bildiren ölçü aygıtlarının verdiği bilgileri işleme yeteneğine de sahip olacaktır. Bilgisayar bu şekilde aldığı bilgilere göre, kanatların eğriliğini en uygun biçimde değiştirebilecektir.
Bu konuda çalışan bir başka firma da Airbus'tır. Airbus da uçağın kanatlarına, tıpkı kuşlarınki gibi uçuş koşullarına göre şekil alabilme özelliği kazandıracak uyarlanabilen kanatlar (adaptive wings) yapmaya çalışmaktadır. Amaçları ise yakıt sarfiyatını en aza indirmektir.
Baykuslar, avlarını, geceleri onların farkında olmadıkları bir anda yakalamak için üzerlerine sessizce çullanırlar. Virginia'daki NASA Langley Araştırma Mer- kezi'ndeki araştırmacıların belirttiğine göre birçok kuşun uçuş tüylerinin belir- gin, düzgün şekilli kenarları olmasına karşın baykuşların uçuş tüyleri, havanın kanat üzerinden geçerken ortaya koyduğu türbülansı -ve böylelikle gürültüyü de- azaltacak şekilde yumuşak saçaklara sahiptir. Askeri tasarımcılar baykuş ka- natlarını taklit ederek hayalet uçakları olduklarından daha da gizli hale getire- bilmeyi umuyorlar. Baykuşlardaki tasarım sayesinde radarlar tarafından görül- meyen uçakların hiç duyulamayacak kadar sessiz olması hedefleniyor.86
Kısacası kuşların uçuş şekilleri ve kanat yapıları tam anlamıyla bir tasarım harikasıdır. Kuşlardaki bu eşsiz tasarım yıllardan beri uçak mühendislerinin ilham kaynağı olmuştur. Allah bu canlıları uçmaya en elverişli sistemlerle donatmıştır. Allah Kuran-ı Kerim'in bir ayetinde bu canlılara şöyle dikkat çekmiştir:
Onlar, üstlerinde dizi dizi kanat açıp kapayarak uçan kuşları görmüyorlar mı? Onları Rahman (olan Allah')tan başkası (boşlukta) tutmuyor. Şüphesiz O, herşeyi hakkıyla görendir. (Mülk Suresi, 19)
Kuşların kanat şekli, uçabilmelerinde rol oynayan bir numaralı faktördür. Şahin, atmaca ve kırlangıç gibi hızlı uçan kuşların kanatlarının uçları, diğer kuşların kanatlarına göre arkaya doğru daha çekik, dar ve sivri uçludur. Kuşların bu kanat özellikleri uçak mühendisleri için yol gösterici olmuştur.88
Kuşların uçuşunun incelenmesi, uçak kanatlarının yapılarında önemli değişikliklere neden olmaktadır.
Bu değişikliklerden ilk yararlanan uçaklardan biri, bir Amerikan avcı uçağı olan F-111'dir. Artık bu uçağın kanatlarında, yönü değişebilen hareketlerle uçağın sağa ya da sola dönmesini sağlayan kanatçıklar bulunmamaktadır. Uçak, dönüşlerini, kuşların yaptığı gibi, kanatlarının biçimlerini, kanadın yandan görülen eğriliğini artırarak ya da azaltarak yapmaktadır. Bu sayede uçaklar, yön değiştirirken dengede kalabilmektedirler.
Yüksek hızlarda en iyi kanat şekli, uçları geriye doğru çekik kanatlardır. Düz kanatlar ise daha fazla kaldırma kuvveti sağlar. Bu, kalkış ve iniş sırasında önemlidir. Bu iki özellikten de yararlanmanın tek yolu, konumlarını değiştirebilen kanatlar yapmaktır.89
Bunlara hareketli kanatlar denir. F-111, Tornado gibi savaş uçakları böyle kanatlara sahiptir. Bu uçakların kanatları hız kazandıkça kuyruğa doğru konum değiştirirler. Uzun çalışmalar sonucunda keşfedilen bu tasarım, kuşlarda ilk yaratıldıkları andan itibaren vardır.
Kuş kemiklerinin içleri boştur, bu nedenle de son derece hafiftir. Modern uçakların kanatları da kuş kemiklerinden ilham alınarak içleri boş olarak tasarlanmaktadır.
Albatroslar uzun ve büyük yüzeyli kanatlara sahiptir. Albatros bu yapısı sayesinde kanatlarını çırpmadan uzun mesafelerde uçabilir. Planörlerin kanat yapısı albatroslardan örnek alınarak tasarlanmıştır. Bu sayede planörler de pervane kullanmadan uzun süre havada süzülerek uçabilir.
Kuşlar iniş ve kalkışlarında rüzgarı cephelerinden almayı tercih ederler. Böylece daha az enerji harcamış olurlar. Havaalanları yapılırken uçuş pistleri de cepheden rüzgar alacak biçimde konumlandırılırlar. Böylelikle karşıdan rüzgar alarak uçuşa geçen uçaklar daha az yakıt harcamış olurlar.
Bir uçak uçarken kanadının ucunda basınç farklılıklarından dolayı büyük burgaçlar (kanatların ucunda oluşan burgu şeklindeki hava akımları) oluşabilir. Bu tip burgaçlar, uçuş esnasında uçakta olumsuz etkiler oluşturur.
Havacılık araştırmaları için yapılan incelemelerde, akbabaların uçarken teleklerini (kanatlarının uçlarında yer alan büyük tüyleri) bir elin parmakları gibi açtıkları tespit edilmiştir. Bu gözlemin sonucunda araştırmacılar, akbabanın kanat uçlarını örnek alarak küçük metal kanatçıklar yapmayı ve bunları uçaklarda denemeyi düşünmüşlerdir. Bu kanatçıklar sayesinde bir dizi küçük burgaç oluşturularak, bunların daha önceki büyük burgaçların yerlerini alması sağlanacak, böylece burgaçların uçak üzerindeki zararlı etkisi azaltılmış olacaktı. Deneylerle doğruluğu kanıtlanan bu düşünce şu an uçaklara uygulanmaya çalışılmaktadır.
Bir böcek uçarken saniyede ortalama birkaç yüz defa kanat çırpar. Hatta kanatlarını saniyede 600 defa çırpabilen böcekler bile vardır.
Bir saniyede bu kadar hareketin olağanüstü bir hassaslıkta yapılması, bu tasarımın teknolojik olarak taklit edilmesini imkansız kılmaktadır.
Nitekim California Üniversitesi'nde biyoloji profesörü olan Michael Dickinson ve arkadaşlarının meyve sineklerinin uçuş tekniğini ortaya koyabilmek için geliştirdikleri robot, meyve sineğinin 100 katı büyüklüğünde ve sineğin kanat hızının ancak binde biri hızla kanat açıp kapama hareketi gerçekleştirebilmektedir. Üstelik her beş saniyede bir kanat hareketi yapan robot sineğin bu hareketi için 6 ayrı motor kullanılmaktadır.
Prof. Dickinson gibi birçok bilim adamı, yıllardır böceklerin kanat çırpma hareketlerinin ayrıntılarını ortaya koymak için çeşitli deneyler yapmaktadırlar. Meyve sinekleri üzerinde yapılan bu deneyler sırasında Dickinson, sinek kanatlarının -basit menteşelerle tutturulmuş gibi- düz hareketler yapmadığını, aksine son derece kompleks aerodinamik tekniklerden yararlandığını tespit etmiştir. Ayrıca her çırpmada kanatların yönü değişmektedir: Aşağı hareket eden kanatta üst kısım yukarı bakarken, yukarı harekette kanat döner ve bu kez kanadın alt kısmı yukarı bakar. Bu kompleks uçuş tekniğini analiz etmek isteyen bilim adamları ise, uçak kanatları için kullanılan "klasik aerodinamiğin" yetersiz olduğunu ifade etmektedirler.
Bilimsel çevreler uçak teknolojisinde büyük gelişmeler kaydedildiği konusunda hemfikirdirler. Ancak iş mikro-çırpmalı uçuşa gelince, Wright kardeşlerin 1903 yılında bulundukları seviyede olduklarını itiraf etmektedirler. Üstte böceklerin kanatları örnek alınarak yapılan bir mikro uçuş sistemi, yanda da Wright kardeşlerin yaptığı ilk uçak görülüyor.
Nitekim meyve sinekleri de uçmak için birden fazla aerodinamik özellikten yararlanır. Örneğin kanatlar bir vuruş meydana getirdiğinde arkasında girdaplı, komplike bir hava dalgası bırakır. Kanat geri dönerken de bunu dümen suyu gibi dalganın içinden geçirerek daha önce kaybettiği enerjisinin bir kısmını yeniden devreye sokar. Saniyede 200 kez kanat çırpan 2,5 milimetrelik meyve sineğinin uçmasını sağlayan kas, diğer tüm böceklerin uçuş kaslarının arasında en güçlüsü olarak nitelendirilir.
Ayrıca sineklerde, kanatların yanı sıra sahip oldukları keskin gözler, denge için kullandıkları ufak arka kanatlar ve kanatların zamanlamasını ayarlayan alıcılar gibi daha pek çok detay da tasarımlarındaki mükemmelliği artırmaktadır.
Büyük düz kanatlar böceklerin uçuşunda avantaj sağlar. Ancak böyle kanatların zarar görme riski de fazladır. Bu nedenle katlanabilmeleri gerekir. Ne var ki büyüklük katlanmayı zorlaştıran bir özelliktir. Arılarda bu problem, çengelcik adı verilen bir sıra hassas kanca dizisi tarafından çözülür. Çengeller kanatları birbirine birleştirir. Arı bir yere konduğunda, çengelcikler birbirlerinden ayrılır ve kanatlar rahat bir şekilde katlanabilirler.
Sinekler milyonlarca senedir bu aerodinamik kurallardan yararlanarak uçmaktadır. Günümüzde en gelişmiş teknolojileri kullanan bilim adamlarının bile sineklerin uçuş tekniklerini tam olarak açıklayamamaları, yaratılışın apaçık delillerinden biridir. Allah, düşünebilen insanlar için bir sinekte aklının ve ilminin benzersizliğini bize göstermektedir. Kuran'da şöyle buyrulmaktadır:
"Ey insanlar, (size) bir örnek verildi; şimdi onu dinleyin. Sizin, Allah'ın dışında tapmakta olduklarınız -hepsi bunun için biraraya gelseler dahi- gerçekten bir sinek bile yaratamazlar. Eğer sinek onlardan bir şey kapacak olsa, bunu da ondan geri alamazlar. İsteyen de güçsüz, istenen de." (Hac Suresi, 73)
Hayvanların her biri, insanları hayrete düşüren birçok yaratılış özelliklerine sahiptir. Kimileri suda hareket etmelerini sağlayan en ideal şekle (hidrodinamik) sahipken, kimileri de bizim için oldukça yabancı olan duyuları kullanır. Bunların birçoğu insanların ilk defa karşılaştıkları, daha doğrusu yeni farkına vardıkları şeylerdir. Biyomimikri bilimi sayesinde keşfettiğimiz bu olağanüstü yapıların taklit edilmesiyle ortaya çıkan ürünlerin, ileriki yıllarda yaşantımızda çok daha sık kullanılacağına hiç şüphe yoktur.
1/100 saniyenin altın madalyayı belirlediği olimpiyat yarışmalarında, yarışmacılar açısından suyun vücutlarının üzerinde oluşturduğu sürtünme direnci oldukça önemlidir. Bu nedenle birçok yüzücü, sürtünme direncini en aza indirecek yeni mayoları tercih etmektedir. Bu mayolar yüzücüde olabildiğince geniş bir yüzeyi kaplar ve vücuda sımsıkı yapışır. Mayonun kumaşı, dikey reçine şeritleri üstüne köpek balığı derisinin özelliklerini taşıyan bir dokumadan ibarettir.
Köpek balıkları üzerinde taramalı elektron mikroskobuyla yapılan incelemelerde, balığın derisinin şeritler içerdiği görülmüştür. Şeritler, dikey su girdapları veya su spiralleri oluşturarak suyu balığın vücuduna daha çok yapıştırır ve suyun yüzmeye karşı direncini azaltır. Şeritlerin bu etkisi "Ribblet etkisi" olarak bilinir ve bu konu ile ilgili NASA'nın Langley Araştırma Merkezi'nde Ribblet deri araştırmaları yapılmaktadır. Son on yıldır da bu etki mayolar üzerinde uygulanmaktadır.
Yeni lifler ve yeni dokuma teknikleri ile yapılan mayolar, yüzücünün vücudunu sararak suya en az direnç gösterecek şekilde üretilmektedir. Nitekim yapılan araştırmalar bu mayoların diğer mayo tiplerine oranla sürtünme direncini %8 azalttığını göstermiştir.
Köpekbalığının derisindeki pullarda U biçimi kanallar bulunur. Bu kanallar girdaplar oluşturarak suyu vücuda yaklaştırır ve suyun yüzücüye karşı oluşturduğu direnci de azaltır. Yukarıdaki büyük resimde köpek balığının derisinin taramalı elektron mikroskobundaki görünüşü yer alıyor. 93 Sidney Olimpiyatlarında Avustralyalı Ian Thorpe gibi altın madalyalı tüm yüzücüler köpek balığı derisinin özelliğini taşıyan mayolar giydiler. Bu, yeni bir iş sahasının açılmasını sağlayacak kadar önemli bir gelişmeydi. Mayo üretiminde dünyanın en ünlü isimleri arasında yer alan Speedo, Nike ve Adidas gibi firmalar biyomekanik ve hidrodinamik konusunda birçok uzmanı işe aldılar. 94
Pit denen çukur organlara sahip olan, aynı zamanda "Pit Viper" olarak isimlendirilen yılanlar "engerek yılanları" olarak bilinir. Texas Üniversitesi Elektrik ve Bilgisayar Mühendisliği bölümünde profesör olan Dr. John Pearce, pit engerekleri olarak bilinen "Crotaline"ları incelemiştir.
Yapılan araştırmalarda bu yılanların gözlerinin önünde bulunan ve fazla sayıda sinir barındıran küçük çukurların, sıcakkanlı avların yerlerinin tespit edilmesinde kullanıldıkları ortaya çıkmıştır. Pit denilen bu çukur organlar son derece kompleks bir ısı-algılayıcı sistem içerir. Bu sistem öylesine hassastır ki, metrelerce uzaktaki bir fareyi, zifiri karanlıkta bile algılayabilir.
Araştırmacılar engereğin tespit ve imha mekanizmasının sırlarını çözdüklerinde, yılanın uyguladığı yöntemlerin ülkenin düşman füzelerden korunmasında çok daha geniş ölçüde uygulanabileceğini ifade etmektedirler. Bununla birlikte tehlikeli görevlerde uçuş yapan pilotların da düşman silahlarından kaçmalarına yardımcı olabilecek sistemler geliştirilebilecektir. Dr. John Pearce, "Hava Kuvvetleri biyolojik sistemi taklit ederek, daha iyi bir füze dedektörü yapabilecek mi?" sorusunu gündeme getiriyor. Ayrıca bu amaçla yürüttüğü çalışmalarda yılanın hassasiyetine yetişmekte oldukça zorlandığını da şöyle anlatıyor:
Biz, esasen yılanın organının hassasiyetini örnek alıyoruz. Sinir uyarılarını ölçebilirsiniz, fakat sorun bu uyarıların ne anlama geldiğidir. Bunu bize söylemesi için sayısal bir model kullanıyoruz: Organa çarpan kızıl ötesi ne kadar fazlaysa, o kadar çok sinir uyarısı olmaktadır.
Yılanın pit organında, kan damarları ve sinir düğümleri bakımından zengin olan çok ince bir zar vardır. Bilim adamlarının inceleme yapabilmesi için bu zarın yaydığı sinyallerin durulduğu bir zamanı yakalamaları gerekmektedir. Ama bu zar öylesine hassastır ve tepkilerindeki çeşitlilik de o kadar kısa sürelidir ki, sinyalleri yakalayıp bunlar üzerinde bir çalışma yapmak oldukça zordur. Pit organının işleyişini anlamak için hassas ölçümler ve mikro-grafik resimler üzerinde çalışmak gerekmektedir.
Bu örnekte de görüldüğü gibi, doğadaki canlılar çok üstün bir akıl ve teknoloji sergilemektedirler. Doğadaki tasarımlardan örnek alan araştırmacılar da, bu sayede uzun yıllarını alabilecek projeler için benzersiz modeller elde etmekte ve kısa zamanda sonuca ulaşmaktadırlar.
Aslında renk değiştirebilen elbiselerin teknolojisi ile bukalemunun renk değiştirme özelliği benzer gibi gözükse de ikisi birbirinden oldukça farklıdır. Çünkü bu teknoloji renk değişim özelliği taşısa da bukalemun gibi kamuflaj özelliğine sahip değildir. Bukalemun hiçbir zahmete katlanmadan en kısa zamanda bulunduğu ortama uyum sağlarken renk değiştirme teknolojisinde böyle bir özellik yoktur.
Bukalemunların bulundukları ortama göre renk değiştirebilmeleri son derece şaşırtıcı ve en az o kadar da estetik bir olaydır. Bukalemun öylesine üstün bir kamuflaj yeteneğine sahiptir ki, bu işi yapmaktaki çabukluğu ile insanı hayrete düşürür.
Bukalemun, derisinin altındaki kırmızı ve sarı renk taşıyıcılarını, mavi ve beyaz yansıtıcı tabakayı ve en önemlisi de rengini koyulaştıran "kramotofor" hücrelerini büyük bir ustalıkla kullanabilir.
Örneğin bir bukalemunu sapsarı bir ortama koyduğunuzda vücudunun renginin de hızla sarı renge dönüştüğünü görürsünüz. Üstelik bukalemun sadece tek bir renge değil alacalı renklere de tam bir uyum gösterebilir. Bunu başarabilmesinin sırrı ise bu usta kamuflajcının derisinin altındaki renk hücrelerinin boyutça büyümeleri ve hızla yer değiştirerek bulundukları yere uyum göstermeleridir.
ABD'de MIT laboratuvarlarında bukalemunlardaki gibi renk değiştirme özelliğine sahip elbise, ayakkabı ve çantalar yapmayı amaçlayan bir çalışma yürütülmektedir. Üzerinde çalışılan bu teknoloji, özel bir silikon malzemenin küçük bir elektron yüklemesi ile istenen renge dönüşmesini sağlar. Böylece, kumaş ve benzeri materyalden üretilen her türlü giyim eşyası ve aksesuarın birkaç saniyede renk ve desen değiştirmesi mümkün olur. Bu iş için küçük bir elektronik cihazın kullanılması gerekmektedir.
Bukalemunlar bulundukları ortama uygun olarak renk değiştirebilirler. Aslında hayvan, kendisine büyük avantaj sağlayan bu özelliğinden haberdar bile değildir. Allah bukalemunun vücudunu, kendiliğinden ortamın rengini almasını sağlayan bir sistemle yaratmıştır.
Pille çalışan bu cihaza, üzerinde bulunan bir klavyeden kullanılmak istenen rengin kodunun girilmesi yeterlidir. Ne var ki bu teknoloji bugün için oldukça pahalıdır. Örneğin bir erkek ceketinin maliyeti 10 bin doları bulmaktadır.
Biri size gelip bir ceket gösterse ve dese ki: "Bu ceketin renk değiştirme özelliği var. Ama ne ceketi ne de renk değiştirme özelliğini hazırlayan biri söz konusu değil. Hepsi kendiliğinden oldu."
Ne düşünürdünüz? Muhtemelen bunu söyleyen kişinin "deli" ya da "son derece cahil" olduğunu düşünürdünüz. Çünkü ceketi diken bir terzinin ve renk değiştirme özelliğini hazırlayan bilim adamlarının var olduğu çok açıktır.
Peki, bukalemun son derece mükemmel olan bu değişimi nasıl gerçekleştirmektedir? Bütün bu işlemleri kendisi yapıyor, değişimi sağlayan sistemleri kendisi tasarlayıp, vücuduna yerleştiriyor olabilir mi? Elbette ki bütün bunları bukalemunun kendi iradesiyle yaptığını iddia etmek akıl dışı olacaktır. Bir insanın bile böyle bir değişimi gerçekleştirmesi mümkün değilken, bir sürüngenin kendi bedeninin görünümünü belirlemesi, hatta görünümünü değiştirecek bir sistemi vücudunun içine yerleştirmesi kesinlikle mümkün değildir. Böyle üstün bir yeteneğin tesadüfen oluştuğunu iddia etmek de aynı şekilde tamamen tutarsız ve anlamsız bir iddiadır.
Doğadaki hiçbir mekanizma böyle kusursuz bir yeteneği oluşturma ve ihtiyacı olan canlıya verme gücüne sahip değildir.
Bukalemunları Allah yaratmıştır. Allah, yaratma sanatındaki benzersizliği bize bu gibi örneklerle göstermektedir. Allah üstün ve güçlü olandır.
Göklerde ve yerde olanların tümü Allah'ı tesbih etmiştir. O, üstün ve güçlü (aziz) olandır, hüküm ve hikmet sahibidir. Göklerin ve yerin mülkü O'nundur. Diriltir ve öldürür. O, herşeye güç yetirendir. (Hadid Suresi, 1-2)
ABD'nin ünlü bilim dergilerinden New Scientist'teyayınlanan bir makalede, bir bilim adamının bir müzeyi ziyareti sırasında, 515 milyon yıldır bir kehribar içinde korunarak günümüze kadar gelmiş bir sinek fosilini inceleme fırsatı bulduğundan bahsedilmektedir. Bu bilim adamı, sineğin gözlerindeki bal peteğine benzer yapıları ve bu yapılar sayesinde, özellikle eğik gelen açılardaki ışığı çok daha iyi algıladıklarını fark etmiştir. Nitekim daha sonraları yapılan araştırmalarda bu hipotez doğrulanmıştır.
Bilim adamları bugün bu bulgular sayesinde, uydularda enerji sağlamak için kullanılan güneş panellerinden çok daha fazla verim elde etme imkanı sağlamışlardır. Çünkü güneş panellerinde en çok verim, paneller ısı ve ışık dalgalarını hiç yansıtmadığında alınabilmektedir. Sineğin korneasını inceleyen bilim adamları yeni bir anti-reflektör maddenin varlığını da keşfetmişlerdir. Işığın yansımasını engelleyen bu madde, güneş panelleri için çok uygun yapıya sahiptir ve üstelik bu panelleri sürekli olarak güneşe doğru çevirmeye yarayan pahalı ekipmanların da gerekliliğini ortadan kaldırmıştır.
Uzay teknolojisi bu tasarımı daha yeni keşfedip kopyalarken, sinek bu özelliğe milyonlarca yıldır sahiptir. Çok keskin, renkli görmeyi sağlayan bu benzersiz tasarım, sineğin ne derece üstün bir yaratılış örneği olduğunu gösterir. Fakat bu örnekler sadece, aklını kullanabilen ve yaratılan her varlığın Allah'ın kontrolünde olduğunu anlayabilen yani iman eden insanlar için anlaşılırdır.
Bir ayette buna benzer örneklerin inkar edenler için hiçbir şey ifade etmediği şöyle açıklanır:
Şüphesiz Allah, bir sivrisineği de, ondan üstün olanı da, örnek vermekten çekinmez. Böylece iman edenler, kuşkusuz bunun Rablerinden gelen bir gerçek olduğunu bilirler; inkâr edenler ise, "Allah, bu örnekle neyi amaçlamış?" derler. Bununla birçoğunu saptırır, birçoğunu da hidayete erdirir. Ancak O, fasıklardan başkasını saptırmaz. (Bakara Suresi, 26)
Canlı türlerinin nadir olarak bulunduğu çöl ortamında da insanı hayrete düşüren tasarımlara sahip canlılar bulunmaktadır. Bunlardan birisi de Stenocara böceğidir. Nature dergisinin 1 Kasım 2001 tarihinde yayınlamış olduğu bir haberde, Namib çölünde yaşayan bu böceğin yaşamını sürdürmesinde hayati önemi olan suyu nasıl topladığı konu edilmiştir.
Stenocara böceğinin su toplama sistemi, esas olarak sırtının özel tasarımına dayanır. Bu böceğin sırtı yer yer küçük tepeciklerden oluşan bir yüzeye sahiptir. Bu tepeciklerin aralarındaki boşlukların yüzeyi bir tür balmumu ile kaplı olduğu halde tepeciklerin zirvelerinde balmumu yoktur. Bu durum, böceğin suyu daha etkin bir şekilde toplayabilmesine olanak sağlar.
Böcek, çöl ortamında havada çok seyrek olarak bulunan nemi rüzgarlardan ayrıştırarak içer. Burada herkesin dikkatini çeken konu, Stenocara böceğinin havada uçuşan su zerreciklerini nasıl ayırdığı ve bu işlemi çöl ortamında nasıl gerçekleştirdiğidir. Çünkü su damlacıkları çöldeki yüksek ısı ve rüzgarlar sayesinde çok çabuk buharlaşır. Ağırlığı neredeyse sıfır olan bu zerrecikler, çöl rüzgarlarının etkisiyle yere paralel biçimde uçuşur. Böcek bunu bilirmişcesine hareket eder ve rüzgara karşı eğimli bir şekilde pozisyon alır ve sırtındaki özel tasarım sayesinde havadaki su zerrecikleri sırtının tepesinde birikip böceğin ağız kısmına doğru yuvarlanır.
Nature dergisinde Stenocara böceğindeki üstün tasarım için şu yorum yapılmıştır:
Biyomimetik dalı için potansiyel oluşturmasına rağmen, damlacıkları havadan ayıran ve büyük damlalar haline getiren bu mekanizma hala anlaşılmış değildir.
Bu böceğin sırtının yapısı elektron mikroskobu altında incelenmiş ve bilim adamları böceklerdeki bu yapıların su soğutucularına, su motorlarına ve bina kaplamalarına mükemmel bir model oluşturacağını belirtmişlerdir. Bu türden kompleks tasarımlar kendiliğinden veya doğa olayları sonucu ortaya çıkamazlar. Böylesine olağanüstü tasarıma sahip sistemi küçücük bir böceğin tasarlamış olması da elbette mümkün değildir.
Ateş böcekleri karın kısımlarında yeşil-sarı ışık üretir. Ateş böceklerinde ışık üreten hücreler, oksijen ve "lusiferaz" adlı bir kimyasalla reaksiyona giren "lusiferin" adlı bir kimyasal içerir. Böcek, hücrelerine nefes alma tüpleriyle sağladığı hava miktarını ayarlayarak ışığının yanıp sönmesini kontrol eder. Normal elektrik ampulleri %10 verimle çalışırlar, %90'ı ise ısı olarak açığa çıkar. Buna karşın ateş böcekleri %100'lük bir verimle ışık üretirler. Ateş böceklerinin bu başarılı elektrik üretimi bilim adamlarına örnek teşkil etmektedir.
Peki ama ateş böceklerini bu kadar verimli bir üretim yapmaya yönelten güç nedir? Evrimcilere göre bu güç şuursuz atomlar, tesadüfler ya da hiçbir zorlayıcı gücü olmayan dış etkenlerdir. Ancak bu saydıklarımızın hiçbiri bu verimli çalışmayı başlatacak güce sahip değildir. Allah'ın sanatı benzersizdir ve sonsuzdur. Allah Kuran'daki pek çok ayette aklını kullanan insanların yaratılmış olan varlıkları düşünerek öğüt almaları gerektiğinden bahseder. Dolayısıyla insana düşen yaratılış mucizeleri üzerinde düşünmek ve sadece Allah'a yönelmektir.
Her yıl milyonlarca insanın hayatına mal olan trafik kazalarına çözüm arayan bilim dünyası, şimdi çekirgelerin bu soruna bir çözüm sunabileceğine inanmakta. Yapılan araştırmalarda çekirgelerin milyonları aşan sürüler halinde dolaştıkları halde birbirleriyle çarpışmadıkları tespit edilmiştir. Çekirgelerin bunu nasıl başardıkları sorusunun cevabı ise bilim adamları için yeni ufukların açılmasına neden olmuştur.
Yapılan deneylerde, çekirgelerin üzerlerine gelen cisme önce elektronik sinyal gönderdikleri ve yerini tespit edip hemen kendi yönlerini değiştirdikleri anlaşılmıştır. İnsanların yıllardır çözümsüz kaldıkları bir konuda çekirgelerin yöntemleri trafik sorununa çözüm olarak uygulanmaya çalışılmaktadır. Bu canlılar da yaratılışın apaçık delillerindendir...
Japon mühendis ve bilim adamları "500 serisi" olarak adlandırılan hızlı trenleri tasarlarken önemli bir problemle karşılaşmışlardır: Gürültü. Çözümü kuşların mükemmel tasarımında arayan Japonlar, çok geçmeden aradıklarını bulmuş ve başarılı bir şekilde uygulamışlardır.
Japonların ürettiği hızlı trenlerde "güvenlik" en önemli konulardan biridir. İkinci konu ise, Japonya çevre standartlarına uyumludur. Japonya dünyadaki demiryolu işletmeleri içerisinde en katı "gürültü standartları"na sahiptir. Bugün mevcut teknolojileri kullanarak daha hızlı gitmek oldukça kolaydır. Ancak bununla beraber daha sessiz gitmek nisbeten zordur. Japon Çevre Bakanlığı'nın düzenlemelerine göre, yerleşim merkezlerinde bir demiryolunun 25 metre uzağında gürültü seviyesi 75 desibel veya daha az olmalıdır. Kırmızı ışıkta duran arabaların yeşil ışık yandığında aynı anda kalktıklarında oluşan gürültü 80 desibeli geçmektedir. Bu değerlerle yapılan kıyaslama "Shinkansen" olarak adlandırılan hızlı trenin ne kadar sessiz olması gerektiğini ortaya koymaktadır.
1. Baykuş tüyü
2. Pürüzlü çıkıntılar
3. Pantograf
Trenin belli bir hıza ulaşana kadar çıkardığı sesin nedeni, tekerleklerin raylar üzerindeki hareketidir. Ancak hızı 200 km/s olduğunda sesin asıl kaynağı, trenin hava içindeki hareketiyle ortaya çıkan aerodinamik gürültüdür.
Aerodinamik gürültünün oluşmasındaki bir numaralı etken ise tepedeki tellerden elektrik almak için kullanılan pantograflar veya akım toplayıcılardır. Normalde kullanılan dikdörtgen şekilli pantograflarla gürültünün azalmayacağını fark eden mühendisler, araştırmalarını hızlı ama sessiz hareket eden canlılar üzerinde yoğunlaştırmışlardır.
Baykuş, tüm kuşlar içinde en sessiz uçuşu gerçekleştirir. Baykuşların düşük sesle uçmasının ardındaki sırlardan bir tanesi, kanatlarındaki kıvrımlardır. Baykuşların kanatlarında diğer kuşlarda bulunmayan pürüzlü tüyler vardır. Bunlar gözle bile görülebilirler. "Aerodinamik ses" hava akımında oluşan girdaplardan kaynaklanır. Girdaplar büyüdükçe ses de artar. Baykuşun kanadında pek çok pürüzlü çıkıntılar olduğundan, büyük girdaplar yerine küçük girdaplar oluşur ve baykuş son derece sessiz bir uçuş gerçekleştirir.
Japon mühendis ve tasarımcılar, doldurulmuş bir baykuşu rüzgar tünelinde teste tabi tuttuklarında, bu kuşun kanat yapısındaki mükemmelliği bir kez daha görmüşlerdir. Sonunda trenin üzerindeki gürültüyü, baykuşun sahip olduğu düzensiz tüy prensibine benzeyen kanat şeklinde pantograflar kullanarak etkin biçimde azaltmayı başarmışlardır. Bu sayede Japonların doğadan esinlenerek taklit ettikleri pantograf benzeri sistem, "işini en sessiz olarak yapan" ünvanını almaya hak kazanmıştır.
Yalı çapkını avlanmak için, direnci az olan havadan direnci çok olan suya dalar. Kuşun gagası suya dalışı kolaylaştırdığı gibi vücudunun da bir zarar görmesine engel olur. Buna karşın hayvan dalış yaparken suyun içindeki avını görmek zorundadır. Allah bu canlıyı suya dalarken hem görmesini engellemeyen hem de gözü koruyan özel bir koruma mekanizması ile yaratmıştır. Yalı çapkının bir özelliği de yaptığı dalışlarda su içindeki hedeflere tam isabet kaydetmesidir. Suyun dışından bakıldığında suyun içindeki cisimlerin olduklarından farklı yerlerde göründükleri düşünüldüğünde bu küçük kuşun başardığı işin önemi daha iyi anlaşılmaktadır.
Hızlı trenin çalıştığı hat üzerinde tüneller vardır. Bu durum, mühendisler için çözülmesi gereken başka bir problem oluşturmuştur. Tren tünele yüksek bir hızla girdiğinde atmosferik basınç artar ve gel git dalgaları gibi dalgalara dönüşerek tünelin sonuna ses hızı ile ulaşır. Çıkışa vardıktan sonra ise dalga geri döner. Basıncın bir kısmı tünelin çıkışında serbest bırakılır ve bazen bir patlama sesi oluşur.
Dalgaların basıncı atmosferik basıncın binde birinden az olduğu için "mikro basınç dalgaları" olarak adlandırılır. Dalgaların oluşumu ise yukarıdaki resimde görüldüğü gibidir.
Basınç dalgasının etkisiyle oluşan gürültü, insanları rahatsız edecek kadar fazla olur. Tünellerin çok daha geniş yapılması ile bu gürültü azaltılabilir ancak tünellerin kesit alanlarını büyütmek hem zor hem de çok masraflıdır.
Bunun üzerine mühendisler trenin kesit alanını azaltıp burun kısmını yeterince sivri ve pürüzsüz hale getirmenin çözüm olabileceğini düşünmüşlerdir. Nitekim bir deneme treni üzerinde bu fikirlerini uygulamışlar ama yapılan denemede trenin neden olduğu mikrobasınç dalgalarını ortadan kaldıramamışlardır.
Bu sorun karşısında doğada benzer durumların olabileceğini düşünen mühendis ve tasarımcıların aklına "yalı çapkını" adlı kuş gelmiştir. Yalı çapkını da suya dalarken, tıpkı trenin tünele girdiği zaman hava direnci nedeniyle ani değişiklikler yaşamasına benzer değişiklikler yaşar. Çünkü yalı çapkını avlanmak için, direnci az olan havadan direnci çok olan suya dalar.
Bu durumda 300 km/s ile giden trenlerin de yalı çapkınının gagası gibi dalışını kolaylaştıran bir buruna ve ön yüze sahip olması gerekir.
Japon Demiryolları Teknik Araştırma Enstitüsü ve Kyushu Üniversitesi'nde yapılan araştırmalarda, tünelin mikro basıncını baskılamak için, "dönel paraboloid"in en ideal şekil olduğu ortaya çıkmıştır. Yalı çapkınının gagası yakından incelenecek olursa alt ve üst gaganın kesitinin de aynen böyle olduğu görülür. Yalı Çapkını kuşundaki bu eşsiz tasarım sadece bir örnektir. Doğadaki tüm canlılar, hayatlarını devam ettirmelerine imkan tanıyacak kusursuz tasarımlarıyla insanlara örnek olacak şekilde yaratılmıştır.
1. Tren
2. Giriş
3. Tünel
4. Basınç Dalgası
5. Çıkış
6. Mikro Basınç Dalgası
Kuş tüylerindeki keratin proteininin ve doğal boya maddesi melaninin birlikteliği ışığın bizim görebileceğimiz şekilde kırılmasını sağlar; tüylerde gördüğümüz açıklı koyulu renkler de bu keratin proteininin tek bir yönde konumlanmış olmasından kaynaklanmaktadır. Kuş tüylerindeki son derece canlı renkler tüylerin bu yapısal özelliğinden kaynaklanır.
Bu tasarımdan esinlenen bir Japon firması, yeniden kullanılabilir işaret tabelaları üretmiştir; bu tabelaların yüzeyleri, UV ışınları altında yapısal değişim göstermektedir. Tabela üzerine düşen UV ışınları malzemenin kristalize sıralanışını değiştirir ve istenen mesajı göstermesi için belirli renklerin devre dışı kalmasını sağlar. Bu tabelalar, tekrar tekrar kullanılabilmekte veya üzerine yeni imajlar basılabilmesine imkan tanımaktadır. Böylece hem yeni tabela üretme maliyeti ortadan kalkmakta hem de bu üretim için gerekli olan zehirli boyalar kullanılmamaktadır.
Günümüzde bilgisayarlar hayatımızın her anına girmiş durumdalar. Evimizde, işyerlerimizde hatta arabalarımızda... Günün yirmi dört saatini bilgisayarların başında geçirebiliyoruz. Bu kadar yoğun kullanıma sahip olan bilgisayarlardaki teknoloji de her geçen gün büyük bir hızla gelişiyor. Yaşam standartlarının yükselmesi bilgisayarların işlem hızının da aynı hızda gelişmesini gerektiriyor. Böylece bilgisayarlar gün geçtikçe daha da hızlanıyorlar. Yeni çıkan modeller baş döndürücü hızlara rahatlıkla ulaşabiliyor. Bilgisayarların işlem hızını belirleyen çiplerin daha hızlı olması, daha fazla işlemi daha kısa sürede yapabilmesi anlamına geliyor. Ancak bu çipler hızlandıkça daha fazla elektrik kullanılmasına sebep oluyor ve bu hızlı işlemlerin sonucunda çip aşırı derecede ısınıyor. Bilgisayar çipinin erimemesi için ise soğutulması şart. Ancak mevcut pervane fanlar, son model çipleri soğutmaya artık yeterli olamıyor. Bu ısınma problemine yeni çözüm arayışları içindeki çip tasarımcıları sonunda doğadan hazır bir çözüm bulduklarını açıkladılar:
"Kelebek kanatları, tasarımlarında mükemmel bir yapıyı da beraberlerinde taşıyor. Tufts Üniversitesi'nde yapılan araştırma, kelebeğin kanatlarında bir soğutma sistemi olduğunu ortaya çıkardı. Bu soğutma sisteminin bilgisayar çiplerinin mevcut soğutma sistemi ile karşılatırıldığında çok daha yüksek bir performansa sahip olduğu ifade ediliyor. Bu konu ile ilgili olarak, Amerikan Ulusal Bilim Kurumu'ndan, makine mühendisi Prof. Dr. Peter Wong'un başkanlığında bir araştırma ekibi kurulmuştur.
Kelebekler soğuk kanlı canlılar oldukları için vücut ısılarını en verimli şekilde, devamlı olarak düzenlemek zorundadırlar. Bu çok büyük bir problemdir. Çünkü uçarken sürtünme ile büyük miktarda ısı oluşacaktır. Bu ısının acil olarak soğutulması gerekmektedir. Aksi halde kelebeğin hayatını sürdürebilmesi mümkün olmayacaktır. Çözüm ise, kanın kanatlardaki çok ince film benzeri dokuların içinden geçirilmesi ile sağlanır. Böylece vücutta oluşan ısı giderilmiş olur."
Bu yeni soğutma tekniğinin, çip üreticilerinin hizmetine girmesi için çalışmalar sürdürülmektedir. Unutulmamalıdır ki kelebeklerdeki bu eşsiz tasarım, ilk ortaya çıktıkları andan beri vardır. Aksi durumda kelebeklerin yaşaması mümkün değildir. Kelebek kanatlarının böyle kusursuz bir çözümle birlikte yaratılmış olması, bizlere yaratıcımız olan Allah'ın üstün ilim ve kudretini göstermektedir.
Amerika'daki Ulusal Sandia Laboratuvarı, 12 Temmuz 2001 tarihinde yayınladığı haber bülteninde, yapılan çalışmalar sonucunda "göz keskinliğine ve netliğine yaklaştıklarını" açıkladı.
Yayınlanan haberde "64 bilgisayarı kullanarak dijital bir görüntü elde edildiği ve bilgisayarların bu görüntüye ulaşmasının ise yalnızca birkaç saniye sürdüğü" belirtildi. Bu elbette ki çok önemli bir gelişmedir ancak burada unutulmaması gereken bir nokta vardır:
İnsan gözü retinadaki görüntüyü saniyenin onda biri kadarlık kısa bir sürede oluşturur ve bu görüntü yalnızca 1 milimetrekare genişliğinde bir alanı kaplar. Bu özellikleri düşünüldüğünde insan gözünün son teknolojiye sahip 64 bilgisayardan çok daha hızlı ve kullanışlı bir mekanizma olduğu açıkça görülmektedir.
Ortalama 70-80 yıl gibi uzun bir süre yaşayan bir kişinin kalbi, dakikada 70-80 kereden bütün ömrü boyunca yaklaşık birkaç milyar defa atar. Yapay kalp üzerine araştırmalarıyla tanınan "Abiomed" isimli şirket, bütün araştırmalarına rağmen kalbin yıllarca başarıyla sergilediği kesintisiz fonksiyonu taklit edemeyeceklerini ifade etmiştir. Şirketin yeni geliştirdiği yapay kalbin 5 senede yaklaşık 175 milyon kez atması ise çok iyi bir hedef olarak görülmektedir.
Son teknoloji ürünü bu yapay kalp, insanlardan önce danalarda denenmiş, ancak danalar sadece birkaç ay süre ile hayatta kalabilmişlerdir. Birkaç ufak değişiklikle birlikte yeni kalbin gelecek yıl insanlarda da denenmesi planlanmaktadır. Duke Üniversitesi'nde bir biyomühendis olan ve bu konuda yazılmış bir de kitabı bulunan Steven Vogel, araştırmacıların neden insan kalbini taklit etmekte bu kadar zorlandıklarını şöyle açıklamaktadır:
Bizim sahip olduğumuz motorlar, güçleri ve etkinlikleri ne olursa olsun, o ka- dar farklı çalışırlar ki. Oysa kalp kası, bizim teknolojik donanımımızda bulunan hiçbir şeye benzemeyen yumuşak, ıslak, kasılabilen bir makine gibidir. İşte bir kalbi bu yüzden taklit edemezsiniz.112
Bizim sahip olduğumuz motorlar, güçleri ve etkinlikleri ne olursa olsun, o kadar farklı çalışırlar ki. Oysa kalp kası, bizim teknolojik donanımımızda bulunan hiçbir şeye benzemeyen yumuşak, ıslak, kasılabilen bir makine gibidir. İşte bir kalbi bu yüzden taklit edemezsiniz.
Abiomed şirketinin yapay kalbi de gerçek bir kalp gibi 2 karıncıktan oluşmaktadır. İki kalp arasındaki benzerlik sadece budur. Araştırmayı yöneten Pennsylvania Üniversitesi'nden biyomühendis Alan Snyder bu farkı "Gerçek bir kalpte kas bir kap gibi görev görüyor ve kendisi kasılıyor" ifadeleriyle anlatır. Kalple aynı prensipte çalışan pompalarda bir kap ve bu kabın içindeki akışkanı pompalayan bir de sistem bulunur. Kalpte ise kabın kendisi pompa işlemi görür. Alan Snyder'in bir cümle ile özetlediği fark işte budur.
Kendi kendine kasılan bir kabı nasıl yapacaklarını bilemeyen araştırmacılar, iki karıncığın arasına yerleştirdikleri bir motor sayesinde, her iki karıncığın iç duvarlarını iterek hareket ettirmişlerdir. Yapay kalp, karın içine yerleştirilen bir pille çalışmakta, bu pil ise hastanın üzerinde taşıdığı şarj olabilen daha büyük bir pil paketinden yayılan radyo dalgaları ile sürekli şarj edilmek zorundadır.
Gerçek bir kalbin ise enerji için bir pile ihtiyacı yoktur, çünkü kalbimiz kendi enerjisini her hücresinin içinde kendi başına üretebilen benzersiz bir kas tasarımına sahiptir. Ayrıca kalbin taklit edilemeyen özelliklerinden biri de eşi benzeri olmayan dinamik bir atım hacmine sahip olmasıdır.
Nitekim dinlenme halinde dakikada 5 litre kan pompalayan bir kalp, egzersiz sırasında bunu dakikada 25-30 litreye kadar artırabilir. Abiomed şirketinin yöneticisi olan Kung, bu olağanüstü tempo değişikliğini "Bu henüz hiçbir mekanik cihazın ulaşamayacağı bir şey" diyerek ifade eder. Şirketin yaptığı yapay kalp ise dakikada en fazla 10 litre kan pompalayabilir ki bu da pek çok faaliyet açısından yetersiz kalır.
Ama asıl ulaşılamayan, kalbin kendine pompaladığı kan ile beslenmesi ve ihtiyaca göre güçlenmesidir. Böylece bir kalp hiç bakım görmeden 50-60 sene çalışabilir. Kalp kendi kendini yenileyebilme özelliğine sahiptir. Bu nedenle kesintisiz çalışma performansını hiçbir zaman kaybetmez. Bu da onu taklit edilemez yapan en büyük özelliklerinden bir başkasıdır.
Bilim adamlarının günümüz teknolojisi ile ulaşamadıkları, sadece ulaşmayı hayal edebildikleri özelliklere sahip olan kalbimiz, benzersiz tasarımıyla Yaratıcımızın, Yüce Rabbimiz olan Allah'ın üstün ilmini bizlere tanıtmaktadır.
Siber alemde bir bilgisayar bir virüsten etkilenecek olursa bu, dünyadaki diğer bilgisayarların da etkilenebileceği anlamına gelir. Dolayısıyla pek çok firma, bilgisayar network sistemlerini virüslerden korumak için bir "bağışıklık sistemi" oluşturmanın gerekliliğini hissetmiş ve bu alanda çok sayıda çalışma yapmaya başlamışlardır. Bu çalışmaları sürdüren merkezlerden biri de New York'ta bulunan, IBM'in Watson Araştırma Merkezi'ndeki virüs yalıtım laboratuvarıdır. Burası, öldürücü virüslerle çalışan yüksek güvenlikli bir mikrobiyoloji laboratuvarıdır. Ayrıca burada, şimdiye kadar tanımlanmış 12.000 bilgisayar virüsünü teşhis edebilecek, aynı zamanda virüsü güvenli bir şekilde bilgisayarlardan izole ve yok edebilecek programlar üretilmektedir.
Biraz önce bahsettiğimiz siber alemdeki virüslere karşı mevcut bilgisayar sistemlerini koruyabilecek dünya çapında bir bağışıklık sistemi kurmaya çalışan firmalardan birisi de ünlü bir marka olan IBM firmasıdır. Firma yetkililerinden biri olan Steve White, bu konuda çözüme ulaşabilmek için insan vücudundaki gibi bir bağışıklık sisteminin kurulması gerektiğini şöyle ifade etmektedir:
İnsan ırkının varlığını devam ettirebilmesinin tek sebebi, sahip olduğu bağışıklık sistemidir. Siber-alemin devamı için de bir bağışıklık sistemine sahip olması şarttır.
Araştırmacılar bilgisayar ağları ile canlılar arasında kurdukları bu bağlantı sayesinde, bilgisayarları tıpkı savunma sistemimizin işleyişi gibi koruyan programlar üretmeye başlamışlardır. Onlara göre epidomoloji (salgın hastalıklarla ilgilenen bilim dalı) ve immunolojiden (bağışıklık sistemi ile ilgilenen bilim dalı) öğrendiklerimiz, canlı organizmaları koruduğu gibi elektronik organizmaları da yeni tehlikelerden koruyabilecektir.
Bilgisayar virüsleri, bilgisayarlara sızıp kendilerini kopyalayarak çoğaltacak ve girdiği bilgisayarda hasarlar oluşturacak şekilde dizayn edilmiş sinsi programlardır. Bu virüslerin belirtileri, tıpkı insanlarda görülen çeşitli hastalıklar gibi, bilgisayar sisteminin yavaşlaması, bazen de esrarengiz bir şekilde dosyalarda hasar oluşmasıdır.
Virüs tehdidine karşı bilgisayarınızı korumayı vaad eden programlar, bilgisayarınızın hafızası tarafından daha önce tanımlanmış virüslerin izlerini bulmak için bilgisayarın bütün belleğindeki her kodu araştıran teşhis programlarıdır. Bilgisayar virüsleri, yazılımcısının imzası niteliğini taşıyan ve tanınmasına imkan veren izler barındırırlar. Bilgisayardaki virüs tarayıcı program bu imzayı bulduğunda, bilgisayara virüsün bulaştığına dair bir uyarı verir.
Yine de anti virüs programlarının bilgisayarlar için tam bir koruma sağladığı söylenemez. Çünkü bazı kişiler birkaç gün içinde yeni virüsler hazırlayıp bilgisayar ortamlarına yerleştirebilmektedir. Bu durumda anti virüs programlarının sürekli olarak güncellenmesi, yeni virüs izlerini tanımalarını sağlayacak bilgilerin verilmesi gerekmektedir. Dolayısıyla sistemler devamlı yenilenmeli ve yeni geliştirilen virüslere karşı yeni anti-virüs programlarının eklenmesi gereklidir.
Ayrıca dünya çapında internet kullanımının yayılması ile birlikte bu virüsler de çok büyük bir hızla yayılmaya ve bilgisayarlara ciddi hasarlar vermeye başlamıştır. IBM firması araştırmacıları da çözümü, doğadaki örneklerin taklit edilmesinde bulmuşlardır. Herşeyden önce bilgisayar virüslerinin de suni bir hayatı vardır ve tıpkı doğadaki biyolojik virüsler gibi, içinde bulundukları sistemi kendilerini çoğaltmak için kullanırlar. Araştırmacılar bu benzerlikten yola çıkarak insanın bağışıklık sisteminin insan vücudunu nasıl koruduğunu incelemişlerdir:
Vücut, yabancı bir organizmayla karşılaştığında hemen istilacıyı tanıyıp etkisiz hale getirecek bir antikor oluşturmaya başlar. Bağışıklık sistemi hastalığa yol açabilecek hücrenin bütününü analiz etmek durumunda da değildir. İlk enfeksiyon yatıştırıldığında, vücut ileriki bir enfeksiyonda daha hızlı karşılık verebilmek için bu antikorlardan bir kısmını hazır tutar. İşte bu hazır tutulan antikorlar sayesinde hücrenin tümünün incelenmesine gerek kalmaz. Nitekim mevcut anti-virüs programları da bütün virüsü değil ama virüsün imzasını tanıyacak bir antikor içerirler.
Görüldüğü gibi insanları teknolojik alanda çaresiz bırakan konuların çözümleri dahi doğada mevcuttur. Her detayın düşünülmüş olduğu kusursuz bir işleyişe sahip savunma sistemimiz, daha biz doğmadan -bizi korumak göreviyle- hazır bulundurulmuştur. Rabbimiz herşeyi koruyan ve gözetendir. Bir ayette şöyle buyrulmaktadır:
... Doğrusu benim Rabbim, herşeyi gözetleyip-koruyandır. (Hud Suresi, 57)
1. Cisim
2. Mercek
3. Diyafram
4. Filimdeki Görüntü
5. Retinadaki Görüntü
6. İris
Omurgalı hayvanların gözleri, ışığın "göz bebeği" adı verilen delikten içeri girdiği yuvarlak toplara benzer. Göz bebeğinin arkasında mercekler yer alır. Işık önce bu merceğin daha sonra da göz yuvalarını dolduran sıvının içinden geçer ve retinanın üzerine düşer. Retinanın üzerinde, "koni hücreler" ve "çubuk hücreler" olarak adlandırılan yaklaşık yüz milyon hücre vardır. Çubuklar aydınlığı ve karanlığı ayırt edebilirken, koniler renkleri seçerler.
Bu hücreler, üzerlerine düşen ışığın etkisiyle oluşan imajı elektrik sinyallerine çevirip optik sinir ağı aracılığıyla beyne yollar. Gözler ışık yoğunluğunu göz bebeğini çevreleyen iris aracılığıyla ayarlar. İris ise, yapısında bulunan minik kaslar sayesinde büyüyüp küçülebilir. Bu, fotoğraf makinelerindekine benzer bir mekanizmadır.
Makinaya giren ışık miktarı, "diafram" adı verilen mekanik bir iris aracılığıyla ayarlanmaktadır. Phil Gates Wild Technology adlı kitabında, fotoğraf makinalarının gözü taklit eden basit bir model olduğunu şöyle açıklar:
Fotoğraf makinaları, omurgalı gözlerinin ilkel ve mekanik bir versiyonudur. Bu makinalar aslında aynen göz gibi, önlerindeki açıklık dışında içine ışık geçirmeyen kutulardır. Görüntüyü retina yerine bir film üzerine yansıtırlar. Gözlerde görüntüye odaklanma merceğin şekli değiştirilerek olur. Fotoğraf makinalarında ise bu işlem merceğin filme olan mesafesi değiştirilerek gerçekleştirilir.
Fotoğraf çekilirken yapılacak ilk işlem netlik ayarıdır. Görme işleminde de, etrafımızdaki görüntülerin duyarlı tabaka üzerine net olarak düşmesi için aynı işlemin yapılması gerekir. Fotoğraf makinelerinde bu işlem elle, gelişmiş kameralarda ise otomatik olarak yapılır. Daha özel amaçlarla kullanılan mikroskop ve teleskoplarda da netlik ayarı yapılır. Ancak yapılan bu işlem her durumda vakit kaybına neden olur.
Oysa insan gözü bu ayarı sürekli olarak ve çok kısa bir süre içinde kendi kendine yapar. Üstelik kullanılan yöntem taklit edilemeyecek kadar üstündür. Göz merceği, çevresinde bulunan kaslar sayesinde görüntüyü retina üzerine düşürür. Yapısı son derece esnek olan ve kolay biçim değiştiren bu mercek, gerektiğinde bombeleşerek, gerektiğinde gerilerek ışığın düştüğü noktayı sabit tutar.
Eğer gözde bu ayar kendiliğinden yapılmasaydı, örneğin insan baktığı noktaya bir düğme yardımı ile odaklama yapmak zorunda kalsaydı, görmek için sürekli özel bir çaba harcaması gerekecekti. Görüntü bir netleşip bir bulanıklaşacaktı. Bir nesneye bakıldığında görebilmek zaman alacak, bunun sonucunda tüm hareketlerimiz yavaşlayacaktı.
Ancak Allah gözlerimizi kusursuz olarak yaratmıştır ve dolayısıyla bu sıkıntıların hiçbirini yaşamayız. Hiç kimse, karşısında belli bir uzaklıkta duran nesneyi net olarak görmek istediğinde, aradaki mesafeyi, merceğin odaklama ayarını ve bunlarla ilgili birçok optik hesaplamaları yapmakla uğraşmaz. Nesneyi net görebilmek için yalnızca ona bakmak yeterlidir. Geri kalan tüm işlemler otomatik olarak göz ve beyin tarafından halledilir. Üstelik bütün bu işlemler yalnızca bir isteme süresinde gerçekleşir.
Bir fotoğraf makinesiyle gündüz çekilen fotoğraf net olur. Ancak aynı film ve makineyle gece yıldızlar çekildiğinde fotoğrafta hiçbir şey gözükmez.
Oysa göz kapaklarımız saniyenin onda biri gibi kısa bir zamanda açılıp kapanmalarına rağmen geceleri yıldızları çok net bir şekilde görebiliriz.
Çünkü gözlerimiz çok çeşitli aydınlanma koşullarına ve değişik ışık şiddetlerine göre kendisini her an otomatik olarak ayarlayabilir. Bunu sağlayan, gözbebeğinin etrafındaki kaslardır.
Eğer ortam karanlık olursa bu kaslar açılır, gözbebeği genişler ve göze daha çok ışığın girmesi sağlanır. Eğer ortam aydınlık olursa bu sefer kaslar kapanır, gözbebeği küçülür ve içeri giren ışığın miktarı azaltılır. Bu sayede hem gece hem gündüz görüntü net olur.
Göz, görüntünün aynı anda hem siyah-beyaz, hem de renkli fotoğrafını çeker. Daha sonra bu fotoğraflar beyinde sentezlenerek normal görüntü halini alır.
Retina tabakasında bulunan çubuk hücrelerinin görevi, bakılan nesnenin biçimini siyah-beyaz olarak ayrıntılı bir şekilde algılamaktır. Koni hücreleri ise nesnenin renklerini tespit ederler. Sonuçta, her iki hücreden alınan sinyallerin değerlendirilmesiyle, dış dünyanın görüntüsü şekillenir ve renkli bir halde beynimizde oluşur.
Fotoğraf makinesi göze göre son derece ilkel bir yapıya sahiptir. Hatta gözün görüntü iletme tekniği en gelişmiş kameralardan bile kat kat üstündür. Sonuç olarak da gözün ilettiği görüntü insanoğlu tarafından yapılmış herhangi bir aletin iletebildiği görüntüden çok daha kalitelidir.
Bir TV kamerasının çalışma prensipleri incelenirse sözü edilen gerçek daha iyi anlaşılır. Bu kameranın çalışma ilkesi görüntülerin değil, bir görüntüyü yeniden oluşturacak olan ışıklı nokta dizilerinin iletilmesine dayanır. Bu yüzden kamera karşısındaki nesne, satır denilen belirli sayıda kuşağa bölünür ve de yayın sırasında bir "tarama" işlemine başvurulur. Bir fotosel lamba, böyle bir satırın bütün noktalarını soldan sağa birbiri ardınca tarar. Hepsinin ışık durumunu değerlendirir ve sonunda bunlara dayanarak birtakım sinyaller verir. Bir satırı baştan sona kadar taradıktan sonra, bir sonraki satıra geçer ve tarama işlemi böylece sürüp gider. Bu fotoselin çalışma ritmi, bir görüntünün 625 ya da 819 satırını 1/25 saniyede tarayabilecek şekilde hesaplanmıştır. Böylece bütün bir görüntünün tamamlanması bitince, yeni bir görüntü iletilir. Bu şekilde iletilen bildirilerin sayısı çok fazladır ve sinyaller baş döndürücü bir tempoyla üretilir.
Gözün tüm bu anlattıklarımızdan çok daha üstün bir işleyiş mekanizmasına sahip olduğu dahası hiçbir bakım ve parça değişimine ihtiyaç duymadığı düşünülürse yapısının ne kadar hayranlık verici ve mükemmel olduğu daha net bir şekilde anlaşılır.
Tıp teknolojisi geliştikçe de insan gözünün ne kadar büyük bir mucize olduğu daha iyi anlaşılmaktadır. Göz hakkında elde edilen bilgilerin teknolojiye uyarlanmasıyla da her geçen gün çok daha gelişmiş kameralar, fotoğraf makineleri ve sayısız optik sistem üretilmektedir. Ancak, teknoloji ne kadar ilerlese de yapılan elektronik aletler gözün ilkel birer taklidi olmaktan öteye gidememiştir. Bilgisayar destekli kameralar da dahil olmak üzere hiçbir insan buluşu alet, göze rakip olamaz.
Peki gözdeki bu kompleks yapı nasıl ortaya çıkmıştır?
Kuşkusuz bu yapının tesadüfler sonucunda ya da uzun zaman içinde kendi kendine oluşması mümkün değildir. Göz tek bir parçası eksik olsa işlevini yerine getiremeyecek bir yapıya sahiptir. Hiçbir tasarım tesadüfen oluşamaz, gözde çok açık ve benzersiz bir tasarım vardır ve elbette o da tesadüfen var olmuş değildir. Canlı-cansız tüm varlıklar gibi gözümüzü de var eden Yüce Allah'tır. Böylesine kompleks "organik makina"nın bizlere verilmiş olması, Allah'a şükretmemiz için bir vesiledir. Kuran-ı Kerim'in bir ayetinde Allah şöyle buyurmaktadır:
De ki: 'Sizi inşa eden (yaratan), size kulak, gözler ve gönüller veren O'dur.' Ne az şükrediyorsunuz? (Mülk Suresi, 23)
1. İç Retina
2. Dış Retina
3. Optik Sinir
4. İris
5. Kornea
Gözün gerçekleştirdiği işlemlere hayranlık duyan ve gözün üstün tasarımını teknolojik alanda taklit etmek isteyen bilim adamları, son zamanlarda bu konu hakkında birçok çalışma yapmaktadırlar. Bu sayede doğada bulunan canlıları ve kusursuz mekanizmaları da daha yakından inceleme imkanı bulmuşlardır. Biyomimetik alanında yapılan bu çalışmalar teknolojik alandaki gelişmelere büyük hız kazandırmaktadır.
Gözümüzün sinir hücreleri olan "retina hücreleri" gelen ışığı tanıyıp yorumlar. Retina hücreleri daha sonra değerlendirilen bu bilgileri bağlantıda oldukları diğer hücrelere iletir. Gözümüzdeki tüm bu işlemler yeni bilgisayarlara model oluşturmuştur:
Retina hücrelerinin yaptığı iş yalnızca ışığı algılamakla sınırlı değildir. Retina birbirleriyle olağanüstü bir yoğunlukta bağlantı oluşturmuş sinir hücrelerinden oluşur. Işığa ait sinyaller beyne iletilmeden önce sayısız işlemden geçirilir. Örneğin retinayı oluşturan hücreler cisimlerin kenarlarını hesaplar, ışık sinyalinin gücünü artırır, aydınlık ya da karanlığa göre uyum sağlayarak düzeltmeler yapar. Günümüzün güçlü bilgisayarları da benzeri işlemleri yerine getirebilmektedir. Ancak retinadaki sinir ağı bu iş için, bilgisayarlara nispeten çok daha az bir enerji kullanır.
California Teknoloji Enstitüsü'nden Carver Mead başkanlığında bir araştırma ekibi, retinada kolayca gerçekleştirilen işlemlere imkan tanıyan tasarımın sırrını araştırmaktadır. Carver Mead, Caltech firmasından biyolog Misha Mahowald ile birlikte retinadaki sinir ağına benzer yapıda elektronik devreler tasarlamıştır. Yapılan bu devrelerde gözdeki gibi ışık algılayıcıları bulunmaktadır. Algılayıcılar tıpkı retinada olduğu gibi bir diğer algılayıcıyla bağlantı halindedir. Kullanılan direnç, amfi gibi elektronik devre parçalarının, ışık algılayıcılarının, retina hücreleri gibi kendi aralarında haberleşebilmelerine imkan tanımaktadır.
Ancak tüm çabalara rağmen, bu devreyi, retina ağında olduğu gibi birebir olarak taklit edebilmek mümkün olmamıştır. Çünkü canlı bir retinadaki hücrelerin ve bunların arasındaki bağlantıların sayısı çok fazladır. Bunun yerine tasarım mühendisleri şu an için, retinadaki sinir ağının ön işlemlerini nasıl yaptıklarını anlamaya çalışıp, aynı işi yapabilen daha basit devreler tasarlamaktadırlar.
Ey insanlar, bir örnek verildi; şimdi onu dinleyin. Sizin, Allah'ın dışında tapmakta olduklarınız- hepsi bunun için biraraya gelseler dahi- gerçekten bir sinek bile yaratamazlar. Eğer sinek onlardan birşey kapacak olsa, bunu da ondan geri alamazlar. İsteyen de güçsüz, istenen de. Onlar, Allah'ın kadrini hakkıyla takdir edemediler. Şüphesiz Allah, güç sahibidir, azizdir. (Hac Suresi, 73-74)
California Üniversitesi Beyin Araştırma Enstitüsü'nün fizyoloji bölümündeki araştırmacılar, daha hassas işitme cihazları üretebilmek için doğadaki işitme sistemlerini incelemeye almışlardır. Yapılan bilimsel çalışmalar sonucunda Ormia ochracea adlı sinek türünün kulağının, sahip olduğu olağanüstü tasarımıyla işitme aleti dizaynında bir devrim yapacağı anlaşılmıştır. Bu sineğin kulağı, sesin geldiği yönü mükemmel bir şekilde tespit edecek şekilde tasarlanmıştır. Nörobiyolog Ron Hoy bu durumu şöyle anlatır:
Bugüne dek, sesin geldiği yönü tayinde insan kulağının en iyi olduğunu zannediyorduk. Birbirinden 15 cm uzaklıkta yer alan iki kulağımız sayesinde, ses kaynağının yeri hakkında yeterli ipucu elde edebiliyoruz. Oysa Ormia sineği, kulaklarının arasında yarım milimetrelik bir mesafe olmasına rağmen sesin kaynağını tüm canlılardan daha iyi tespit edebiliyor.
Ormia sineğinin, sesin geldiği yeri hatasız olarak bulabilmesi soyunun devamı için şarttır, çünkü larvalarına besin kaynağı olabilecek bir cırcır böceği bulmak zorundadır. Ormia yumurtalarını, bulduğu bu cırcır böceğinin üzerine bırakarak çıkacak asalak larvaların onunla beslenmelerini sağlar.
Ormia sineğinin, cırcır böceğinin yerini bulması için tasarlanmış hassas kulakları vardır. Şarkı söyleyen cırcır böceğinin yerini o kadar milimetrik saptar ki, koca ormanın içinde hedefini yalnızca 2 derecelik bir hata payıyla yakalar.
İnsan beyni de sesin yerini tespit için Ormia ile aynı yöntemi kullanılır. Bunun için, sesin önce yakındaki kulağa, daha sonra uzakta kalan kulağa ulaşması yeterlidir. Ses dalgası kulak zarına çarptığında bu etki elektrik sinyaline çevrilerek hemen beyne iletilir. Sesin iki ayrı kulağa kaç milisaniye farkla ulaştığını hesaplayan beyin, böylece sesin geldiği yönü hemen saptar. İnsanda bu hesaplama 10 milisaniyede sonuçlanır. Oysa bu sinek türü, aynı hesabı toplu-iğne başı büyüklüğündeki beyniyle, insandan bin kat daha hızlı bir şekilde gerçekleştirir.
Bu sineğin minik olmasına rağmen oldukça işlevsel olan kulak tasarımı, "ORMİAFON" adı altında, işitme aleti ve dinleme cihazlarının yapımında taklit edilmeye çalışılmaktadır. Görüldüğü gibi, küçücük bir sinek dahi evrim teorisinin 'tesadüfen oluşma' safsatasını kökünden çürüten çok üstün bir yapıya ve tasarıma sahiptir. Yine aynı küçük sinek, her parçası ve özelliğiyle onu yaratan sonsuz ilim ve kudret sahibi Yaratıcımızın üstün yaratma sanatını sergiler. Böyle küçücük bir sineğin değil kendi kendine, evrim gibi hayali bir süreçle oluşması, akıl ve zeka sahibi insanların hepsinin biraraya gelmesi, en son teknolojileri ve imkanları seferber etmeleri ile dahi meydana getirilmesi mümkün değildir.
Küçücük bir sinek bile Allah'ın üstün yaratmasının apaçık delillerindendir.
Mimari tasarımlar yapılırken doğadaki örneklerden yararlanmak günümüzde son derece yaygın olan bir yöntemdir. Çünkü doğadaki tasarımlar her yönden kusursuzdur. Enerji tasarrufu, estetik, kusursuz işlevsellik, sağlamlık gibi mimari bir tasarımda olması gereken bütün özellikler doğadaki örneklerinde eksiksiz olarak mevcuttur. Her ne kadar insanların karşısında örnek almaları için çok üstün sistemler bulunsa da bunların taklitleri hiçbir zaman asılları kadar iyi ve pratik olamamaktadır.
Doğada var olan tasarımın taklit edilebilmesi ve mimari yapılarda uygulanabilir hale gelmesi için yüksek derecede mühendislik bilgisi gerekmektedir. Oysa doğadaki canlılar ne yapı statiği, ne de mimari tasarım bilgisine sahiptir. Böyle bir eğitim alma imkanları da yoktur. Tüm canlılar Allah'ın kendilerine ilham ettiği şekilde hareket etmektedir. Ürettikleri mimari harikaların tek kaynağı budur. Allah bir ayette tüm canlıların Kendi kontrolü altında olduğunu şöyle bildirir:
... O'nun, alnından yakalayıp-denetlemediği hiçbir canlı yoktur ... (Hud Suresi, 56)
Tasarladığı yapılarda doğadaki formları kullanan ünlü mimarlardan Buckminster Fuller, doğadaki tasarımların harika kalıplarda olduğunu söyler. Fullar'a göre doğada dinamik, fonksiyonel ve ürünleri hafif olan bir teknoloji vardır. Bunu zorunlu kılan şey ise "optimum verimlilik" tir. 122 Fuller resimde, ışınlı olarak adlandırılan mikroskobik canlılardan esinlenerek hazırladığı tasarım ile görülüyor.
Eugene Tsui, projelerinde doğadaki tasarımları kullanmasıyla tanınmış bir mimardır. Tsui, binalarda görmeye alıştığımız düz, köşeli birbirini kesen hatları kullanmaz. Bunun yerine doğada hakim olan eğimli, yuvarlak hatları tercih etmiştir. Tsui bu tarz planlanmış yapıların deprem, sel, rüzgar gibi yıkıcı etkilere göre daha sağlam olduğunu söylemektedir. 123
Midye ve istiridye kabuklarının görünümü, zıt yönlerdeki eğrilikleri nedeniyle "dalgalı saç"lara benzer. Bu şekil kabuklara, ince olmalarına karşın çok büyük basınçlara dayanabilme özelliği kazandırmaktadır. Onların bu formları, mimarların çeşitli çatı ve tavan tasarımları için model olmuştur. Örneğin Kanada'da Royan Çarşısı'nın çatısı istiridye kabuğunun bu özelliği örnek alınarak hazırlanmıştır.
İstiridye kabuğu ve Royan Çarşısı
İstiridye kabuklarının kıvrımlı yapıları onlara büyük bir dayanıklılık kazandırır. Oluklu mukavvalarda istiridyelerdeki kıvrımlı tasarım uygulanmaktadır. Bu nedenle oluklular, düz tabaka şeklindeki mukavvalardan çok daha sağlamdır.
Münih Olimpiyat Stadı
Yusufçuk böceğinin kanatları, milimetrenin 1/3.000'i kalınlığındadır. Bu kadar ince olmasına rağmen oldukça dayanıklıdır. Bunun nedeni kanatlarının, sayıları 1.000'e varan bölmelerden oluşmasıdır. Bu bölmeli yapı sayesinde hayvanın kanatları yırtılmamakta, uçarken oluşan basınca dayanabilmektedir. Münih Olimpiyat Stadı'nın çatısı da (alttaki fotoğraf) aynı özellik gözetilerek yapılmıştır.
Londra'da, 1851'deki 1. Dünya Fuarı için yapılmış olan "Kristal Saray", cam ve demirin biraraya gelmesiyle oluşturulmuş bir teknoloji harikasıydı. Bu saray 35 m. yüksekliğinde ve yaklaşık 7.500 m2 lik bir alan kaplıyordu. Ayrıca 30 x 120 cm. ebadında, 200.000 den fazla cam panel içeriyordu.
Kristal Saray, Joseph Paxton adındaki bir peyzaj mimarı tarafından tasarlanmıştı. Paxton bu yapısında fikir olarak Victoria amazonica adındaki bir nilüfer çiçeğinden esinlenmişti. Bu nilüfer türü zarif görünümüne karşın, insanları bile üzerinde taşıyabilecek kadar kuvvetli, kocaman yapraklara sahiptir.
Paxton bu yaprakların altını incelediğinde, bunların kaburga benzeri bir yapı ile desteklenmiş olduğunu fark etmiştir: Yaprağın merkezinden çevreye doğru yayılan lif şeklinde uzantılar vardır. Bu uzantıların arası da daha ince çaprazlamasına yerleşmiş başka bir doku ile desteklenir. Paxton nilüfer yaprağındaki kaburgaya benzer yapıyı demir taşıyıcılarla, yaprağın asıl dokusunu ise cam ile özdeşleştirmiştir. Bu sayede, cam ve demirden yapılma, hafif ama aynı zamanda geniş bir alanı kaplayacak kadar sağlam çatılı bir bina yapmayı başarmıştır.
Nilüfer bitkisi Amazon nehrinin dibindeki bataklığın içinde büyümeye başlayarak nehrin yüzeyine doğru uzanır. Amacı yaşayabilmesi için gerekli olan ışığa ulaşmaktır. Suyun yüzeyine vardığında büyümesini durdurur. Hemen ardından burada üstü dikenli yuvarlak tomurcuklar oluşturmaya başlar. Tomurcuklar birkaç saat gibi kısa bir sürede, boyu neredeyse iki metreye varan dev yapraklara dönüşürler. Çünkü ne kadar bol yaprakla nehrin üzeri kaplanırsa o kadar çok güneş ışığından yararlanılarak fotosentez yapılacaktır.
New York'taki JFK Havaalanı'nda, Pan American Terminal binasının çatısı inşa edilirken nilüfer bitkisinin yapısından faydalanmıştır.
Yukarıdaki resimde nilüfer yaprağı şeklinde tasarlanmış bir çatının, üzerindeki yükleri nasıl dağıttığı görülmektedir.
Londra'daki Kristal Saray
Nilüfer bitkisinin ihtiyaç duyduğu bir başka şey de oksijendir. Ne var ki bitkinin köklerinin bulunduğu çamurlu nehir yatağında oksijen yoktur. İşte bu sebeple nilüferler, köklerinden çıkan sapları yukarıya, yapraklarının bulunduğu su yüzeyine doğru uzatırlar. Kimi zaman boyu 11 metreye varan bu saplar yapraklara bağlanır ve yaprakla kök arasında oksijen taşıyan bir kanal görevi görürler.
Acaba bir nehrin derinliklerinde yaşama yeni başlayan tomurcuk, ışığa ve oksijene ihtiyaç duyduğunu, noksanlığı durumunda yaşayamayacağını, ihtiyacı olan şeylerin suyun üzerinde mevcut olduğunu nereden bilir? Yaşamaya yeni başlayan bir varlık, ne o suyun bir bitiş noktasının olduğundan, ne güneşin, ne de oksijenin varlığından haberdardır.
Dolayısıyla evrimcilerin mantığıyla bakarsak, bu bitkilerin çoktan ortam şartlarına yenik düşmüş, soylarının tükenmiş olması gerekirdi. Oysa nilüferler tüm mükemmellikleriyle bugün de karşımızdadır.
Amazon nilüferleri suyun üzerindeki ışığa ve oksijene ulaştıktan sonra, dev yapraklarının sularla dolup batmaması için kenarlarını yukarıya doğru kıvırırlar. Aldıkları tüm bu tedbirlerle yaşamlarını devam ettirebilirler ancak soylarının devamlılığı için daha fazlasına ihtiyaçları vardır. Polenlerini başka bir nilüfere taşıyacak bir canlıya ihtiyaç duyarlar. Bu canlı, kınkanatlı böceklerdir çünkü kınkanatlılar beyaz renge karşı özel bir zaafla yaratılmışlardır. Dolayısıyla da konmak için Amazon nehrinin onca cazip çiçeğinin yanında bembeyaz olan bu nilüferleri seçerler. Amazon nilüferleri de soylarının devamlılığını sağlayacak olan bu konukları geldiğinde, tüm yapraklarını kapatarak, kaçmamaları için onları hapseder ve onlara bol bol polen ikramında bulunurlar. Onları ertesi geceye kadar alıkoyduktan sonra serbest bırakır ve tekrar aynı polenleri kendi üzerlerine getirmemeleri için renklerini değiştirirler. Bembeyaz olan bu görkemli nilüferler artık pespembe olarak Amazon nehrini süslemeye başlarlar.
Hiç kuşku yoktur ki arka arkaya gelen tüm bu kusursuz ve ince hesaplanmış planlar herşeyden habersiz bir nilüfer tomurcuğunun eseri değildir.
Burada özetle anlatılan tüm bu detaylar, kainattaki her varlık gibi bitkileri de yaşamaları için en uygun sistemlerle birlikte Allah'ın yarattığını bize gösterir.
Solda Nilüfer çiçeğinin kesiti,
Aşağıdaki resimde ise Nilüfer bitkisinin su yüzeyindeki yaprağı ve çiçeği görülüyor.
Eiffel Kulesi, uyluk kemiğinin başındaki yapıya benzer şekilde inşa edilmiştir. Bu tasarım sayesinde kule hem sarsılmaz bir özellik kazanmış hem de havalandırma problemini ortadan kaldırmıştır.
Bir mühendislik harikası olarak kabul edilen Eiffel Kulesi'nin tasarımına neden olan olay, kulenin inşaasından 40 yıl öncesine dayanır. Bu olay, o yıllarda İsviçre'nin Zürih şehrinde "uyluk kemiğinin anatomik yapısı"nı ortaya çıkarmayı amaçlayan çalışmadır.
1850'li yılların başında, anatomist Hermann Von Meyer, uyluk kemiğini kalça eklemine bağlayan parçayı inceliyordu. Uyluk kemiğinin leğen kemiğine oturduğu yer kendi ekseni dışındaki bir kıvrım üzerinde bulunmaktaydı. Von Meyer, dikey konumdayken 1 ton ağırlığı kaldırabilecek bir kapasiteye sahip uyluk kemiğinin içinin tek parça halinde değil, birbiri içine geçmiş kafes şeklindeki minik çubuklardan (trabeculae) oluştuğunu gördü.
1866 yılında İsviçreli mühendis Karl Cullman, Von Meyer'in laboratuvarını ziyaret etti. Anatomist Meyer, Cullman'a incelediği kemiğin bir bölümünü gösterdi. Cullman kemiğin, üzerinde oluşacak yük ve basınç etkisini azaltacak bir tasarıma sahip olduğunu fark etti. Bu tasarım kemiğin içindeki uzantıların, insan ayakta durduğunda kemiklere etki eden kuvvet hatları boyunca düzenlenmiş olmasıydı. Bir mühendis olan Cullman aynı özelliğin bir dizi çivi ve destek sistemi ile sağlanabileceğini düşündü. Daha sonra Eiffel Kulesi'nin inşası sırasında bu düşüncelerini uygulama fırsatı buldu.
Eiffel Kulesi de uyluk kemiğindeki gibi, demir kıvrımları, metal çivi ve desteklerden oluşan karışık bir kafes örgü ile inşa edilmiştir. Bu örgü sayesinde kule, rüzgarın eğme ve makaslama kuvvetleri ile oluşan basınca rahatlıkla dayanabilmektedir.
Kemiklerdeki kafes yapı bugün inşaat alanında kullanılan temel tekniklerden biri haline gelmiştir. Bu tekniğin kullanıldığı yapılarda hem malzeme tasarrufu sağlanmakta hem de yapının iskeleti kemikteki gibi sağlamlık ve esneklik kazanmaktadır.
Birçok mimar ve inşaat mühendisi çatı tasarımı yaparken kemiğin iç yapısından faydalanmıştır. Kafes yapı, kemiğin kaldırabildiği yük kapasitesini artırır ve büyük bir sağlamlık kazandırır. Kemiktekine benzer iğli yapılar sayesinde büyük alanları kaplayabilen sağlam çatılar yapılabilmektedir.
İnşaat ve mimaride genellikle yaygın ve düz yüzeyler tercih edilir. Oysa doğada bu tip yüzeylere daha çok eğrisel yerleşmiş lifler arasında rastlayabilirsiniz. Örneğin muz bitkisi böyle bir yapıya sahiptir. Mimarlar ve inşaat mühendisleri muzun bu formunu kullanarak 'jeodezik kubbe' olarak adlandırılan yapı tarzını geliştirmişlerdir. Jeodezik kubbe sayesinde, büyük mekanları az malzeme kullanarak kapamak mümkün olmuştur. Üstelik mekanın içi bol miktarda gün ışığı alabilmekte ve sistem çok çabuk bir şekilde monte edilebilmektedir. Bu nedenle bu yapı daha çok sera ve fuar alanı inşasında uygulanmaktadır.
Yukarıdaki resim muz bitkisinin liflerindeki jeodezik yapıyı gösteriyor. Diğer resimlerde ise söz konusu yapıdan örnek alınarak yapılan binalar görülüyor.
Suda yaşayan organizmalar olan ışınlılar ve diatomlar eşsiz birer mimari yapı kataloğu niteliğindedirler. Birçok mimar projelerini bu canlılardan esinlenerek hazırlamaktadır. 1976'da Kanada'nın Montréal şehrinde kurulan EXPO 76 fuarındaki ABD pavyonu bu yapılara bir örnektir. Pavyonun kubbesi tasarlanırken ışınlılardan esinlenilmiştir.
Arı peteklerinin inşasında son derece önemli detaylar vardır. Bu detaylardan biri de peteklerin dayanıklılığıdır. Arılar birbirlerine yön tarif ederken kovanda, bu boyutlarda bir yapı için deprem kabul edilebilecek titreşimler oluşur. Peteğin duvarları bu ufak depremleri emer. Nature dergisi, bu üstün yapının mimarlara, depreme dayanıklı binalar inşa etmede fayda sağlayacağını belirtmiştir. Haberde Almanya'nın Wurzburg Üniversitesi'nde görevli olan Jurgen Tautz bu konuyla ilgili olarak şu açıklamayı yapmıştır:
Kovanlardaki titreşimler arılar tarafından oluşturulan minyatür depremler gibidir, dolayısıyla yapının buna nasıl bir tepki verdiğini görmek oldukça ilginç. Titreşimlerin emilmesini anlamak, mimarlara, binaların depremlere karşı hangi taraflarının daha dayanıksız olacağını söylemede yardımcı olacak. Bundan sonra bu kısımları kuvvetlendirebilirler ya da binaların kritik olmayan kısımlarına zararlı titreşimleri emecek zayıf noktalar yerleştirebilirler.
Bütün bunlardan da anlaşıldığı gibi, arıların büyük bir ustalıkla inşa ettikleri petek, kusursuz bir tasarım harikasıdır. Dolayısıyla petekteki bu yapı mimarlara ve bilim adamlarına ışık tutmakta, yeni fikirler vermektedir. Arıların peteklerini böylesine kusursuz yapmalarını sağlayan şey, evrimcilerin iddia ettikleri gibi tesadüfler değildir. Arılara bu özellikleri, bu şaşırtıcı yetenekleri veren sonsuz ilim ve kudret sahibi olan Allah'tır.
Bazı örümceklerin kurdukları ağlar, çalıların üzerine bırakılmış bir örtüye benzer. Zemin boyunca yayılan ağ, çalıların uçlarına tutturulan gergin iplikçiklerle taşınır. Bu taşıma sistemi, örümceğe, sağlamlıktan ödün vermeden, oldukça geniş bir alanda ağ kurmasına imkan tanır.
Bu harika yöntem, büyük mekanların üstünü kapamak amacıyla insanlar tarafından birçok yapıda taklit edilmiştir. Bu yapılardan bazıları şunlardır: Cidde Havaalanı Hac Terminali, Münih Olimpiyat Stadyumu, Sidney'deki Ulusal Atletik Stadyumu, Kanada ve Münih'teki hayvanat bahçeleri, ABD'de Denver Havaalanı ve Cambridge'teki Schlumberger Araştırma Merkezi binası.
Örümceğin bu yöntemleri kendi kendisine geliştirebilmesi için uzun süre mühendislik eğitiminden geçmiş olması gerekir. Elbette ki böyle bir şey mümkün değildir. Örümcekler ne yapı statiği, ne de mimari tasarım bilirler. Örümceklerin kurdukları ağlar, "Yaratılış Gerçeği"ni gözler önüne seren dellillerden yanlızca biridir.
1. Sidney Ulusal Atletik Stadyumu,
2. Münih Hayvanat Bahçesi,
3. Cidde Havaalanı
4. Denver'da bir havaalanı
5. Münih Olimpiyat Stadyumu
Derin deniz dipleri, radyoaktif alanlar veya uzay boşluğu gibi yerler insanların çalışmaları için hep riskli bölgeler olmuştur. Gelişen elektronik ve bilgisayar teknolojisi, bu gibi yerlerde iş yapabilen ve robot olarak isimlendirdiğimiz makineleri yapmaya imkan tanımıştır. Sonuçta robot bilimi de elektronik ve mekanikten ayrılarak "robotik" adlı ayrı bir bilim dalı olmuştur. Bugün robotlarla uğraşanların gündeminde yeni bir kavram vardır: "Biyomimetik robotik"
Robot yapımıyla uğraşan bilim adamları ve mühendisler, artık yaptıkları işe özgü robotlar tasarlamanın pek pratik olmadığını düşünmektedirler. Bu nedenle işin yapılacağı ortamda yaşayan bir canlıyı ya da o canlının bir özelliğini taklit eden robotlar yapmayı daha akılcı ve kolay bulmaktadırlar. Örneğin çölde yapılacak bir keşif için akrebe ya da karıncaya benzeyen, deniz dibindeki bir araştırma içinse balığa ya da ıstakoza benzeyen bir robot yapmak gibi... İşte "biyomimetik robotik"in ilgi alanına böyle robotlar girmektedir. "Neurotechnology for Biomimetic Robots" (Biyomimetik Robotlar İçin Sinir Teknolojisi) isimli kitapta konuyla ilgili şu bilgilere yer verilmiştir:
Biyomimetik robotlar hızlı, daha ucuz ve gerçek dünya koşulları ile baş edebildikleri için geleneksel robotlardan farklıdır. Bu robotların mühendisliği, dayandıkları biyolojik sistemlerin biyomekanik ve fizyolojik seviyelerde anlaşılmasından kaynaklanır.
… Nihai hedef, insan operatörlere ihtiyaç duymadan, sadece duyumsal etkileşime dayanarak çevresiyle ilişkiye girebilen ve yönünü bulabilen bağımsız bir robot geliştirebilmektir.
Bilim adamlarını doğadaki canlıları taklit etmeye iten şey, kusursuz vücut tasarımlarıdır. "Karlsruhe eli" olarak bilinen robot elini yapan Hans J. Schneebeli bu konuda şunları söyler:
Robot eller üzerinde ne kadar çok çalışırsam insanların sahip oldukları ellere de o kadar çok hayran oluyorum. İnsan elinin yaptığı işin bir kısmına bile ulaşabilmemiz için daha çok zamanın geçmesi gerekir.
Bazen bir canlının tek bir özelliğini bile taklit etmek için bilgisayar, mekanik, elektronik, matematik, fizik, kimya ve biyoloji gibi bilim dallarının önde gelen isimlerinin biraraya gelmesi gerekmektedir. Hal böyle iken evrimci düşünce, bugün hala son derece karmaşık bir düzene sahip canlıların bir planlama olmaksızın kendi kendine olaşabileceğini iddia edebilmektedir.
Robot bilimi ile uğraşanların en sık karşılaştıkları sorunlardan biri de dengedir. En son teknoloji ürünü donanıma sahip olarak yapılan robotlar bile yürürken dengelerini kaybedebilmektedir. 3 yaşındaki bir çocuğun çok rahatlıkla yapabildiği "dengeyi yeniden kurma" özelliğinden yoksun olan robotlar bu durumda işlevsiz kalmaktadır. Nitekim NASA'nın Mars görevi için hazırladığı bir robot, bu sorun yüzünden hiç kullanılamamıştır. Robotik uzmanları bunun üzerine, denge sağlayıcı bir düzenek kurmak yerine dengesi hiç bozulmayan bir canlıyı, yılanları taklit ederek soruna çözüm bulmaya çalışmışlardır.
Yılanların vücutları diğer hayvanların yapamayacağı şekilde, deliklere ve çatlaklara girebilecek şekilde yaratılmıştır. Omurgalılar gibi sert iskeletleri ve uzuvları yoktur. Gövdelerinin çapını büyütüp küçültebilirler. Dallara sarılabilir ve kayaların üstünden geçebilirler. Yılanların bu özellikleri NASA Araştırma Merkezi tarafından geliştirilen ve "snakebot" adı verilen bir insansız uzay aracına ilham kaynağı olmuştur. Tasarlanan bu yılan robotta, robotun hiçbir engele takılmadan devamlı denge halinde ilerlemesi hedeflenmiştir.
1. Ampüler sinirler
2. Saküller
3. Koklea
4. Endolimfle dolu kanallar
5. Yarımdaire kanalları
6. Ampüller
7. En üst yarımdaire kanalı
8. Orta yarımdaire kanalı
9. Arka yarımdaire kanalı
10. Kristler ve ampüler sinirler
Tüm bedenimizi her saniye sürekli olarak kontrol eden ve ip üstünde yürüyen bir cambazın ihtiyaç duyduğu hassaslıkta ayarlar yapabilen denge sistemimizin önemli bir parçası iç kulakta yer alır.
İç kulaktaki bu denge merkezine "labirent" adı verilir. Labirent, her biri yarım daire şeklindeki üç küçük kemikten oluşur. Bu kemiklerin içleri bir tüp gibi boştur. Yarımdairelerin çapları 6,5 milimetre, içlerindeki boşluğun, yani kesitlerinin çapı ise 0,4 milimetre boyutundadır. Her üç yarım daire de çok özel açılarla birbirlerine bağlanırlar. Bu açılar incelendiğinde, her yarımdairenin üç boyutlu geometrinin temeli olan x, y ve z koordinatlarına karşılık geldiği ortaya çıkmıştır.
Labirentte bulunan bu üç yarımdairenin her birinin içinde, özel bir sıvı yer alır. Bu sıvının içinde gezindiği yüzeyde de tüycüklü hücreler vardır. Biz başımızı sağa sola çevirdiğimizde, yürüdüğümüzde ya da herhangi bir hareket yaptığımızda, bu yarımdairelerin içindeki sıvı hareket eder ve tüycükleri titreştirir. Tüycüklerdeki bu titreşim, aynı salyangozda olduğu gibi tüycüklerin bağlı olduğu hücrelerin iyon dengesini değiştirir ve elektrik sinyali üretir.
İç kulaktaki labirentte üretilen bu elektrik sinyalleri, labirentten çıkan sinirler aracılığıyla beynimizin arka tarafındaki "beyincik" adlı organa iletilir. Labirentten beyinciğe mesaj taşıyan sinirler incelendiğinde, bunların içinde 20 bin ayrı küçük sinir lifi olduğu saptanmıştır.
Beyincik, iç kulaktaki labirentten gelen bu bilgileri her an yorumlar. Ancak dengeyi sağlamak için başka bilgilere de ihtiyaç vardır. Bu nedenle beyincik, gözlerden ve vücudun dört bir yanındaki kaslardan da devamlı olarak bilgi alır. Tüm bu bilgileri müthiş bir hızla analiz eder ve vücudun yerçekimine göre konumunu hesaplar. Bundan sonra ise, bu hesaplamaya dayanarak, kasların nasıl bir hareket yapmaları gerektiğini belirler. Ortaya çıkan sonuç, kaslara yine sinirler aracılığıyla emir olarak bildirilir.
Bu olağanüstü işlemler, saniyenin yüzde biri kadar bile sürmeyen bir zaman dilimi içinde gerçekleşir. Biz de, içimizde gerçekleşen bu mucizenin hiç farkında olmadan rahatlıkla yürür, koşar, en zor sporları yaparız. Oysa bu işlerin tek bir anı için vücudumuzda gerçekleştirilen hesaplamaları kağıda döksek, binlerce sayfa formül yazmamız gerekecektir.
Denge sistemi, içiçe geçmiş birçok kompleks mekanizmanın uyum içinde çalışmasıyla işlev gören kusursuz bir sistemdir. Modern bilim ve teknoloji ise, bu sistemi taklit etmek bir yana, çalışma prensiplerini dahi ayrıntılarıyla çözmeyi başaramamıştır.
Denge, insan bedenindeki en karmaşık sistemler tarafından sağlanan olağanüstü bir kavramdır. İnsanın dengesi, bir masanın ya da sandalyenin dengede durmasına benzemez. Çünkü insan vücudu sürekli bir hareket halindedir. Bu yüzden vücudun ağırlık merkezi sürekli olarak yeniden hesaplanır ve kaslara bu hesaba uygun emirler verilir.
Elbette böylesine kompleks bir sistemin evrim teorisinin iddia ettiği gibi rastlantılarla ortaya çıkması mümkün değildir. Bu sistem, Yüce Allah'ın varlığının ve sonsuz kudretinin delillerinden biridir.
Bu gerçeği farkına varan bir insanın sorumluluğu ise, kendisine böyle bir organı vermiş olan Allah'a şükredici olmaktır.
ABD'de faaliyet gösteren DARPA adlı kuruluşun üzerinde çalıştığı projelerden biri de robot akreptir. Projede akrep modelinin seçilmesinin nedeni, robotun çölde görev yapacak olmasıdır. Akrep, yaratılışı itibariyle son derece zorlu şartlara sahip çöllerde bile yaşayabilir. Akrebin seçilmesinin bir diğer nedeni de toprakta kolaylıkla ilerleyebilmesine rağmen reflekslerinin memelilerinkinden daha basit ve taklit edilebilir olmasıdır.
Araştırmacılar robotu geliştirmeden önce gerçek akrepleri gözlemlemek için uzun zaman harcamışlardır. Akrebin tüm eklemleri işaretlenmiş ve yürüyüşü iki kamera ile kayda alınmıştır.
Daha sonra bu akrebin yürüş esnasında bacakları arasındaki organizasyon ve koordinasyon çıkarılarak model akrebe uyarlanmıştır.
Akrep projesinde robotun görevi sadece çölde 40 kilometre ötede bulunan bir hedefe girmek ve geri dönmektir. Ancak robotun bu görevi hiçbir yönlendirme almadan kendi kendine yapması hedeflenmiştir.
Boston North Eastern Üniversitesi'nden Frank Kirchner ve Alan Rudolph tarafından tasarlanan 50 santimetrelik akrebin karmaşık sorunları çözme yeteneği yoktur. Robot akrep bir sorunla karşılaştığında sadece refleksleriyle hareket etmektedir. Bu, onu durduracak herhangi bir şeyin mesela bir kayaya takılmanın üstesinden gelmesine olanak sağlamaktadır. Robotun önünde iki tane ultrasonik algılayıcı vardır. Eğer boyunun yarısından yüksek bir engelle karşılaşırsa etrafını dolaşmaya çalışacaktır. Eğer sol taraftaki dedektör bir engel teşhis ederse otomatik olarak sağa yönelecektir. Bu robottan belirli bir bölgeye gidip, kuyruğundaki kamera ile üsse resim göndermesi de istenebilmektedir.
ABD ordusu akrebin Arizona'daki denemelerinden çok etkilenmiştir. Robotun yolunu bulma yeteneğinin özellikle şehirler gibi, engellerle dolu olan savaş alanlarında faydalı olması umulmaktadır.
1. Kamera ve Radyo Bağlantısı
2. Ses üstü algılayıcılar
3. Kızıl ötesi algılayıcılar
4. Kayalık Bölge
5. Hedef
a. Robot akrep bir kaya ile karşılaşınca ultrasonla kayayı araştırdıktan sonra akrep, üzerinden tırmanmak için çok yüksek olduğuna karar verir.
b. Önünü kesen şeyden uzaklaşarak robot, bir algılayıcı ile açıklık arayıp diğeri ile ileriye bakarak etrafını dolaşır.
c. Bir açıklık bulduğu zaman geçebileceği kadar büyük olacağından emin olur.
d. Boşluktan geçtiği takdirde akrep hedefine doğru ilerleyebilecektir.
1. Hangi adımın önce atılacağını belirleyen kontrol çipi
2. Kontrol çipini yeniden programlamak için kullanılan ara yüz
3. Pin başına 100 mAmp çeken sürücü çipler
4. İki yönlü harekete izin veren R2 bağlantısı.
5. İki yönlü hava valfleri
6. Hava valflerini 6 barlık hava ile besleyen dış hava kablosu
7. Kontrol ve sürücü çipler 6 volt voltaj regülatörü
8. Çiplerde arıza olduğunu gösteren işaret lambaları
9. Bacak kası görevini üstlenen ünite
10. Güç aktarım kablosu
Yüksek teknoloji kullan›larak yap›lan robot akrep karmafl›k bir yap›ya sahiptir. Buna karfl›n, tasar›m›nda birçok mühendis ve bilim adam›n›n çal›flt›¤› robot sadece kendisine önceden verilen hedefe gidebilmektedir.
Istakozlar dalgalı ve bulanık sularda, taşlı, kumlu veya yosunlu yüzeylerde bile rahatlıkla hareket edebilirler. Böyle zorlu ortamlarda tam donanımlı dalgıçlar bile ilerlemekte zorlanırlar. Şimdiye kadar deniz dibinde kullanılmak üzere yapılan hiçbir robot böyle bir yerde başarılı olamamıştır.
Northeastern Üniversitesi (Boston MA) Deniz Bilimleri Bölüm Yöneticisi Joseph Ayers, ıstakozu taklit eden bir robot geliştirme projesine liderlik yapmaktadır. Ayers projenin amacını şöyle açıklıyor:
Teknik hedefimiz, hedef ortamdaki hayvan sisteminin performans avantajlarını yakalamaktır.
Robotun, madenlerin bulunması ve açılan madenlerde çalışması düşünülüyor. Ayers bu işler için yine ıstakozun ne kadar uygun olduğunu ise şöyle dile getiriyor:
Robotun su altı madenlerini ararken yapacaklarının, bir ıstakozun yemek ararken yaptığı davranışlara uymasını bekliyoruz.
Istakozların hızlı hareket eden suda yuvarlanıp kaymalarını engelleyecek bir yapısı vardır. Hayvan en zor şartlarda bile istediği yönde hareket edebilir ve düzgün olmayan yüzeylerde ilerleyebilir. Aynı şekilde robot da durmak ya da yerinde sabit kalmak için kuyruğunu ve pençelerini kullanacaktır.
Robottaki mikro elektromekanik algılayıcılar (MEMS) ıstakozun dünyayı algılayışını taklit etmektedir. Robot, hareketlerini su içindeki akımlara ve dalgalanmalara göre ayarlayabilecek yapıdadır. Bunun için ıstakoz robota özel su akımı algılayıcıları ve antenler takılmıştır. Gerçek bir ıstakoz, akıntının yönünü tüylü organları ile belirler. Robot ıstakozda ise aynı işi elektromekanik algılayıcıların yapması planlanmıştır.
Lobster
Robo-lobster
Suda yaşayan ıstakoz ve yengeç gibi canlılar, uygun bir eş veya besin bulmak ya da avcılardan kaçmak için koku alma duyularını kullanırlar. California, Berkeley ve Stanford Üniversiteleri'nden araştırmacıların katıldığı bir çalışma, ıstakozların etraflarındaki dünyayı nasıl kokladıklarını ortaya çıkarmıştır.
Istakozlar çok hassas bir koku alma duyusuna sahiptirler. Bu duyu, koku sensörleri geliştirmeye çalışan robot mühendislerinin önünde yeni ufuklar açacak özellikler taşımaktadır. California, Berkeley Üniversitesi'nde Biyoloji Profesörü ve College of Letters & Science adlı derginin başyazarı olan Mimi A. R. Koehl bu konuyla ilgili olarak şunları söylemektedir:
Eğer dalgıçları göndermek istemediğiniz zehirli bölgelere yollayacak insansız taşıtlar ya da robotlar yapmak istiyor ve bunların kokuya göre yer belirlemesini istiyorsanız, bunlar için burun veya koku alan antenler tasarlamalısınız.
Istakozun antenindeki tüylü doku
Istakozlar ve diğer deniz kabukluları, antenlerini koku kaynağına hafifçe vurarak koku alırlar. Bundaki amaç, antenlerinin ucunda bulunan ve kimyasal yollardan algılama yapabilen tüyleri koku molekülleriyle temas ettirmektir. Karaib Denizi'nde yaşayan Panulirus argus adlı ıstakozun antenlerinin boyu 30 cm'yi bulur. Uçlarında yarık bulunan antenin dış tarafı tüylü bir fırça görünümündedir. Burası kokulara karşı oldukça duyarlıdır.
California, Berkeley Üniversitesi'ndeki Mimi A. R. Koehl liderliğinde bir grup araştırmacı antenlerini vuran mekanik bir ıstakoz yapmışlardır. Rasta Lobsta adı verilen robot ile yapılan deneme ve gözlemlerle, ıstakozların koku almak için kullandıkları tekniğin detayları araştırılmıştır.
Istakoz antenini, koklamak istediği şeyin üzerine hızla vurmakta fakat geri çekerken daha yavaş davranmaktadır. Böylece koku bulaşmış olan su, tüylerin arasında hareket etmeyerek daha uzun kalmaktadır.
Istakozun kokuyu algılayabilmesi için ideal bir anten vuruş ve geri çekiş hızı vardır. Yapılan deneyler, antenin farklı bir hızda hareket ettirilmesi halinde suyun duyarlı tüyler arasında akmayacağını ve hayvanın koku alma duyarlılığının azalacağını göstermiştir. Bunun anlamı şudur: Istakoz çok küçük bir yerdeki en ufak koku farklılıklarını bile tüyleri vasıtasıyla yakalayabilmektedir. Bunun için de antenini özel bir teknikle kullanmaktadır.
Solucan derisi son derece etkileyici bir tasarıma sahiptir. Hayvanın silindir biçimindeki vücudunu kaplayan derisi, çapraz sarmallar biçiminde kuşatılmış liflerden oluşur. Vücut duvarındaki kasların kasılması, derideki kısa ve kalın olan liflerin uzun ve ince bir şekle girerek hayvanın vücudundaki iç basıncın artmasına, böylece biçim değiştirmesine sebep olur. İşte solucanların hareket etmesini sağlayan mekanizmanın temeli de budur.
Şu an bu benzersiz mekanik sistem, Reading Üniversitesi Biyomimetik Merkezi'nde yeni projelere ilham kaynağı olmaktadır: Söz konusu projelerden birinde çok sayıda silindirik yapı solucandaki gibi yerleştirilmiştir. Bu arada silindirlerin içinin su emebilecek polimer bir jelle doldurulması planlanmıştır. Su kullanarak jelin şişmesi ve kasılması sağlanacaktır. Böylece kimyasal enerji yalnızca gereken yerde mekanik enerjiye dönüşecek ve meydana gelen basınç tamamen güvenli bir şekilde sarmal biçimli bir torbada hapsedilecektir. Jeldeki şişme ve kasılmanın bu şekilde kontrol altına alınmasıyla oluşturulan sistemin yapay bir kas olarak etkili biçimde çalışacağına inanılmaktadır.
İnsanların örnek aldıkları her canlı, onların sahip oldukları her sistem iman eden insanlar için Allah'ın birer ayeti (delili)dir. Bu gerçek Casiye Suresi'nde şöyle bildirilmiştir:
Sizin yaratılışınızda ve türetip-yaydığı canlılarda kesin bilgiyle inanan bir kavim için ayetler vardır. (Casiye Suresi, 4)
Doğada basınçla hacim büyültüp küçülterek şekil değiştirme sıkça kullanılır. Solucan, ahtapot, deniz yıldızı ve anemonlar bu konuda verilebilecek en iyi örneklerdir. Oysa teknolojik aletlerde şekil değiştirme pek rastlanılır bir şey değildir. Var olan sayılı örnekte bu iş için hidrolik basınç kullanılır. Hidrolik basınç ağır nesneleri, mesela asansörleri kaldırmak için ince boruların içinde uygulanır. Hidrolik adı verilen sıvı, asansörü yukarı itmek için silindire pompalanır. Asansörü aşağı çekmek için de geri boşaltılır. Deniz yıldızları da hareket etmek için hidrolik basıncı kullanırlar. Hayvan, kolları içinde uzunlamasına yer alan tüp biçimli ayaklara sahiptir. Bunlar sıvıyla dolu olan bir iç boru sistemine bağlıdır. Kaslar boruları sıkıştırdığında oluşan hidrolik basınç, sıvıyı ayaklara gönderir. Deniz yıldızı kaslarını kullanarak hidrolik kuvvetin vücudunda bir dalga hareketi oluşturmasını sağlar. İşte bu dalga hareketi sonucu ayaklar bir ileri bir geri uzanarak deniz yıldızının ilerlemesine olanak tanır.
Geko adlı kertenkeleler duvarları hızla tırmanarak tavana yapışabilir ve burada rahatlıkla yürüyebilirler. Uzun yıllardır yürütülen çalışmalar sonucunda hayvanın bu becerisinin hangi üstün tasarımdan kaynaklandığı bulunmuştur. Şimdiye kadar hayali film kahramanı "örümcek adam" gibi dikey yüzeylere hızla tırmanmayı sağlayacak bir yeteneğin ne şekilde mümkün olabileceği bilinmiyordu. Ancak gekonun tek bir adımı özellikle robot tasarımcıları için çok büyük gelişmelere yol açmıştır. Bunlardan bazılarını şöyle sıralayabiliriz:
- Kaliforniyalı araştırmacılar kertenkelenin yapışkanlı parmaklarının hem kuru hem de kendi kendini temizleyen yeni bir sentetik yapıştırıcının geliştirilmesine yardımcı olacağını düşünmektedirler.143
- Gekolar ayaklarıyla sürtünme kuvvetinden 600 kat daha büyük bir yapışkan güç üretirler. Bu tarz bir yapışma tekniğine sahip, geko benzeri ayaklarla yapılacak robotlar, duvarlarda yürüyerek yanan bir binadaki mahsur kalmış kişileri kurtarma için kullanılabilir. Daha küçük araçların kullanıldığı tıbbi uygulamalarda ve bilgisayar mühendisliğinde ise kuru bir yapışkan olarak büyük faydalar sağlayabilir.
- Bacaklarıyla bir yüzeye dokunduklarında otomatik olarak tepki veren yaylar gibi hareket ederler. Bu da beyni olmayan robotlar için oldukça iyi bir metottur. Gekonun ayakları defalarca kullanımda bozulmaz; kendi kendini temizler ve vakumlu ortamlarda ve su altında da çalışır.
- Nano-ameliyatlar sırasında kaygan vücut parçalarını birarada tutmaya yarayabilir.
- Araba lastiklerinin yolu daha iyi kavraması sağlanabilir.
- Teknelerin, köprülerin, iskelelerin çatlaklarının onarılmasında, uydular için düzenli bakımın sağlanmasında kullanılabilir.
Geko ile yapılacak robotların yerleri, camları, tavanları, dik zeminleri temizlemesi mümkün olabilir. Ayrıca sadece dik yüzeylerin tırmanılması değil, karşılaşılan engellerden de etkilenme olmayacaktır.
Teknoloji, bir sanayi dalı ile ilgili yapım yöntemlerini ve kullanılan aletleri kapsayan bilgilerin tümü demektir. Teknoloji üretmek kolay bir iş değildir. Tanımdan da anlaşılacağı gibi biraraya getirilmesi gereken unsur sayısı oldukça fazladır. Bir konuda teknoloji üretebilmek için ilk önce tam bir bilgiye sahip olmanız gereklidir. Daha sonra bu bilgiyi kullanacak bilim adamları ve teknik elemanların sağlanması şarttır. Bu elemanların işe yaraması için gerekli materyaller ve bu materyallerin işleneceği bir de tesis olmalıdır. İşte tüm bu nedenlerden dolayı teknolojik ürün üretmek kolay değildir. Zaten "teknolojik" olarak nitelendirilebilecek ürünlerin geçmişi pek de uzak değildir. Günümüzde bile teknoloji üreten ülkelerin sayısı son derece azdır.
Bugün bilim çevreleri birçok yatırım, bilgi ve araştırma sonucunda ortaya çıkan teknolojik ürünlerin pek çoğunun benzerlerinin doğada var olduğuna şahitlik etmiştir.
Wild Technology kitabının yazarı, ünlü bilim adamı Phil Gates bu gerçeği şu cümlelerle dile getirir:
İcatlarımızın en iyilerinin çoğu, ya aynen diğer canlılardan taklit edilmiştir ya da onlar tarafından zaten kullanılmaktadır. Henüz gezegenimizi paylaştığımız çok sayıda canlı organizmanın sadece küçük bir kısmını keşfedebildik. Bir yerlerde, keşfedilmemiş milyonlarca organizma arasında, hayatımızı kolaylaştırıp geliştirebilecek doğal icatlar bulunuyor. Bunlardan yeni ilaçlar, inşaat malzemeleri, zararlı böcekleri kontrol yöntemleri ve kirlilikle mücadele yolları öğrenilebilir.
Gökyüzünden yeryüzüne ve denizlerin derinliklerine kadar etrafımız sayısız birer yaratılış örneği olan "doğal teknoloji harikaları" ile donatılmıştır. En basit bir endüstriyel ürünün bile bir tasarlayıcısı ve üretim yeri vardır. Bu durumda dev fabrikalarla ya da karmaşık makinalarla kıyaslanamayacak kadar mükemmel sistemlere sahip canlıların tesadüfen ve kendi kendine, doğa şartları sonucunda ortaya çıktığını iddia etmek elbette ki son derece ciddi bir akılsızlık olur.
Her canlı üstün ve mükemmel bir tasarıma sahiptir. Bu mükemmel tasarımlar ilk yaratıldıkları anda kusursuz ve eksiksiz olarak ortaya çıkmışlardır. Çünkü Allah, "kusursuzca var eden"dir.
Bu bölümde doğadaki, yaratılış harikalarından bazılarını, mevcut bazı teknoloji ürünleri ile kıyaslayarak inceleyeceğiz. Bu örnekleri bizler için birer düşünme vesilesi olarak görmeliyiz. Çünkü Allah, Kuran'da şöyle buyurmaktadır:
(Bunlar,) 'İçten Allah'a yönelen' her kul için 'hikmetle bakan bir iç göz' ve bir zikirdir. (Kaf Suresi, 8)
Bazı bitkiler ışık yoğunluğuna karşı duyarlıdır. Gece olunca yapraklarını toplayıp kapatırlar. Hatta bu işi, hava bulutlanıp ışık azaldığında yapan çiçekli bitkiler bile vardır. Bilim adamları bunun, çiçeklerdeki polenlerin geceleri oluşan çiğden ve yağmurdan korunması amacıyla yapıldığını düşünüyorlar. Bizler de ışığın yoğunluğunu algılayan sensörler kullanırız. Bu sensörler gece olup hava karardığında yanan, gün ışıyınca sönen lambalarda kullanılır.
Bitkilerin bir kısmı ışığa karşı duyarlıdır. Bazıları hava kararınca günün ilk ışıklarına kadar çiçeklerini kapalı tutar. Kimileri ise gündüz boyunca çiçeklerinin yüzünü güneşe dönük tutar.
Yukarıda bir ışık sensörünün elektronik devresi görülüyor. Devre çok sayıda elektronik parçalardan oluşur. Eğer tek bir parça çıkarılacak olsa veya bağlantılardan biri değiştirilse devre çalışmayacaktır. Bitkilerdeki ışık algılayıcıları da bu devre ile benzer özelliğe sahiptir: Sistemdeki bir eksiklik bitkideki algılayıcıyı tamamen işe yaramaz hale getirecektir.
Bedenlerimiz gün içinde aldığımız besinleri sindirerek ısı üretir. Bu ısıyı kaybetmemenin en iyi yolu ısının çok çabuk kaçmasını engellemektir. Bunun için zaman zaman kat kat kıyafetler giyeriz. Bu durumda sıcak hava her kat arasında tutularak hapsedilir ve dışarı kaçamaz. Bu şekilde enerji kaybını engellemeye "yalıtım" denir.
Eider ördeği de bu yöntemi kullanır. Bu kuşun tüyleri diğer pek çok kuş gibi hem uçmasını sağlar hem de hayvanı sıcak tutar. Eider ördeğinin oldukça yumuşak ve kabarık göğüs tüyleri vardır. Ördek göğüs tüylerini kullanarak yuva yapar. Böylece hem yumurtalarının hem de yumurtadan çıkan yavrularının soğuyarak üşümesine engel olur. Eider ördeğinin tüyleri sıcak hava katmanlarını tuttuğu için en iyi doğal ısı yalıtkanıdır.
Bugün dağcılar, ısıyı yalıtma kapasitesi yüksek olan tüylerden yapılmış özel kabanlar giyerek vücutlarını sıcak tutuyorlar. Bu kabanlardaki tüylerin yalıtım özelliği Eider ördeğininkiyle tamamen aynıdır.
1. Fiber optik kablo
2. Kablo içinde yansıyarak ilerleyen ışık
Fiber optik teknolojisinde bir ayna gibi ışığı yansıtma özelliğine sahip saydam cam kablolar kullanılır. Fiber optik kablolar kolayca eğilip bükülebildikleri için içlerindeki ışık en girintili çıkıntılı köşelere bile taşınarak kullanılabilir. Ayrıca fiber optik kablolar kendilerine yüklenen elektronik mesajları diğer kablolardan çok daha iyi iletme özelliğine de sahiptir.
Kutup ayısının kürkü doğal bir fiber optik kablo gibidir. Solgun kutup ışığını doğrudan ayının bedenine taşır. Tüylerin bu özelliği o kadar iyidir ki, hayvanın cildi kutup iklimine rağmen güneşte yanarak koyulaşır (Tüyler fiber optik kablo özelliğinde oldukları için güneş ışınları ayının postu yokmuş gibi direkt cildiyle temas eder). Burada ışık ısıya çevrilerek ayının vücudu tarafından emilir. Ayı, postundaki tüylerin bu özelliği sayesinde soğuk kutup ikliminde bile bedenini sıcak tutabilir.
Ayılardan örnek alınabilecek tek şey tüylerinin yapısı değildir: Ayılar kış uykusunu tam 6 aya varan sürelere kadar sürdürebilirler ve bunu boşaltım sistemlerini durdurarak ve kendilerini zehirlemeden yaparlar. Bunun nasıl olduğunu araştırmak, diyabetle mücadeleye katkıda bulunabilir.
Fiber optik teknolojisinin bulunduğu tek canlı kutup ayısı değildir. Güney Afrika çöllerinde yaşayan Fenestraria adlı bitki de bu özelliğe sahiptir. Bitkinin yapraklarının neredeyse tamamı kumun altında gömülüdür. Fenestraria bu şekilde su kaybından ve otlayan hayvanlardan korunur. Bitkinin her bir yaprağının ucu şeffaftır, ışık buradan içeri girerek yaprakta ilerleyebilir.154
Soğuk iklimlerde yaşayan kuşların ayakları genellikle ya soğuk suyun içinde ya da buzun üstündedir. Buna rağmen bu hayvanların ayaklarının donması gibi bir şey söz konusu olmaz. Çünkü hepsinin ısı kaybını en aza indiren bir dolaşım sistemleri vardır. Bu kuşlarda sıcak ve soğuk kan, ayrı damarlarda akar. Ancak bu damarlar birbirlerine çok yakındır. Böylece aşağı doğru akan ılık kan, yukarı doğru çıkan soğuk kanı ısıtır. Bu aynı zamanda ayaklardan vücuda geri dönen kanın çok soğuk olması nedeniyle oluşacak şok etkisini de azaltır. "Karşıt akışlı" olarak isimlendirilen bu doğal ısı değişim sistemi makinalarda kullanılanlarla aynıdır.
Mühendisler böyle sistemleri "karşıt akışlı ısı değiştiricisi" olarak adlandırırlar. Bu sistemlerde birbirinden ayrı fakat bitişik kanallardaki iki akışkan (sıvı veya gaz) birbirlerine karşıt yönlerde akarlar. Bir kanaldaki akışkan diğer kanaldakinden daha sıcaksa, ısı sıcak akışkandan soğuk akışkana geçer.
K1. Anahtar 1,
K2. Anahtar 2
Venüs etobur bir bitkidir. Bitki, üzerine konan bir böceği kapanındaki tüylere dokununca yakalar. Tüyler bir elektrik devresi gibi davranır. Tüye dokunulduğu anda elektrik sinyalleri yayılır ve bitki hücrelerindeki su dengesi değişir. Su alıp şişen hücreler de kapanı kapatırlar.
Elektrik devrelerinde de akım kontrolü için kullanılan anahtarlar Venüsün tüyleri gibi çalışır. Anahtar açıkken devreden akım geçmez. Anahtar kapatılıp devre tamamlandığında elektrik tekrar tellerde akmaya başlar. Hayvanlar ve bitkiler buna benzer birçok biyolojik anahtarı, organizmalarının ilgili bölümlerine sinyal taşıyan elektrik akımlarını başlatmak veya kesmek için kullanırlar.
1. Anahtar kapalı, devre açık
2. Anahtar açık, devre tamamlanmış
3. Akım geçiyor
Aslında Venüsün elektrik devresi birbirine seri bağlanmış iki anahtar gibi çalışır: Kapanın kapanması için iki tüyün uyarımı gereklidir. Bu, yağmur gibi bir nedenle kapanın gereksiz yere kapanmaması için alınmış bir tedbirdir.
Aslında Venüs bitkisinin ne elektrik akımı, ne de bu akımların geçmesini sağlayan elektrik anahtarları hakkında bir bilgisi yoktur. Venüs bitkisinin, konuyla ilgili herhangi bir eğitim alması da mümkün değildir. O halde bir bitki, bir insanın bile özel bir çalışma yapmadan öğrenemeyeceği bu bilgileri nereden bilmekte ve hatasız olarak nasıl kullanmaktadır?
Elbette bitkinin bir aklı dolayısıyla herhangi bir öğrenme yeteneği bulunmamaktadır. Bu bitkiyi böylesine mükemmel bir sistem ile yaratan herşeyin hakimi olan Yüce Allah'tır.
Salyangozların "radula" adı verilen dilleri, iri dişli bir eğe gibidir. Hayvan, dilindeki bu tasarım sayesinde yaprak yüzeylerinde delik açabilir ya da yosunları toplayarak yiyebilir. Radulanın üzerindeki dişler son derece serttir. Öyle ki bazı çöl salyangozlarının radulaları kayalarda bile delik açabilecek sertliktedir. 160 İnsanların tünel açmak için kullandıkları kazıcı dev araçlar da radulalara benzer işler yapar. Ancak bu araçların ucu sık sık aşındığı için değiştirilir. Ayrıca araç çok hantal olduğu için çoğu zaman tünelden çıkarılması yerine tünelde açılan dev bir oyuğa gömülür.
Sinir lifleri, beyinden kaslara ve diğer organlara mesajlar gönderir ve bu mesajları beyne geri iletir. Sinir liflerinin dışı "miyelin" adı verilen yağlı özel bir madde ile kaplanmıştır. Eğer miyelin maddesi olmasaydı ya elektrik sinyalleri çevredeki dokulara sızarak mesajı bozacak ya da vücuda zarar verecekti. Miyelin tıpkı elektrik kablolarının etrafındaki plastik yalıtım malzemesi gibi görev görür.
Elektrik kabloları hem dokunanların zarar görmemesi, hem de elektrik kaçağı yapıp güç kaybına sebep olmamaları için yalıtılırlar. Bu iş için sert ve dayanıklı olduğundan plastik malzemeler kullanılır.
1. Sinir Hücresi
2. Elektrik Kablosu
3. Yalıtkan
4. Miyelin
Birçok hayvan düşmanlarından korunmak için özel bir yetenek gerektiren yer altı sığınakları inşa eder.
Bu sığınaklardaki tüneller yüzeyden belli bir seviyede ve yere paralel olmak zorundadır. Aksi takdirde buraları kolaylıkla su basabilir. Tüneller eğer keskin eğimler verilerek şekillendirilirse bu sefer çökme riski ortaya çıkar. Tünel inşaatlarındaki bir başka husus da hava ihtiyacının problemsiz olarak karşılanmasıdır.
Çayır köpekleri sosyal hayvanlardır. Büyük gruplar halinde yer altında kazdıkları yuvalarda yaşarlar. Nüfusları arttıkça yeni yuvalar açar, bu arada yuvalarını tünellerle birbirlerine bağlarlar. Bazen yuvaların kapladığı alan bir şehir kadar bile olabilir. Böyle bir yeraltı şehrinde havalandırma hayati bir öneme sahiptir. Bu nedenle çayır köpekleri tünellerin yeryüzüne açıldığı yerlerde volkana benzeyen havalandırma kuleleri inşa ederler. Bu kuleler yer altı şehirlerine hava akımı çekilmesini sağlar.
Hava yüksek basınç alanlarından alçak basınç alanlarına doğru hareket eder. Çayır köpeklerinin yaptıkları kulelerin kimileri alçak, kimileri de yüksektir. Aradaki bu yükselti farkı tünel çıkışlarında basınç farkı oluşmasına neden olur. Böylelikle hava, üzerinde alçak basınç oluşan kuleden girerek yüksek basınç oluşan kuleden çıkar. Tünellere çekilen hava bütün yuvalardan geçer, böylelikle mükemmel bir havalandırma sistemi kurulmuş olur.
Çayır köpeklerinin tünellerindeki gibi bir havalandırma yapabilmek için tünel açma tekniğini, alçak ve yüksek basıncın ne olduğunu, bunların yükselti ile ilgili değişimlerini bilmek gerekir. Tüm bunlar ise bilinç gerektiren, yapılan işte akıl ve muhakemenin varlığına işaret eden davranışlardır. Bu durumda çayır köpeklerindeki bu aklın kaynağının araştırılması gerekir ki bu aklın çayır köpeklerine ait olmadığı veya evrimcilerin iddia ettiği gibi kör tesadüfler sonucunda ortaya çıkamayacağı çok açıktır.
Çayır köpeklerini de dünyadaki tüm canlılar gibi Allah yaratmıştır. Allah, insanların üzerinde düşünmeleri için sayısız örnek var eder. Akıl sahibi her insanın yapması gereken, düşünmek ve vicdanının sesini dinleyerek gördüğü her güzellikte Allah'a yönelmektir. Çünkü Allah bağışlayandır, sonsuz adalet sahibi olandır. Allah Kuran'da iman eden kullarını şöyle müjdelemektedir:
Rabbiniz, sizin içinizdekini daha iyi bilir. Eğer siz salih olursanız, şüphesiz O da, (kendisine) yönelip dönenleri bağışlayıcıdır. (İsra Suresi, 25)
1. Havalandırma Kanalları
2. Tünel Delme Kanlları
3. Metro Tüneli
4. Servis Tüneli
İnsanlar ağaç kütüklerini bir dizi kimyasal işlemden geçirerek daha sonra kağıda dönüşecek olan bir tür hamura çevirirler. Kağıt yapımının doğal mucitleri ise yaban arılarıdır.
Üstteki resim bir kağıt fabrikasında üretim sırasında yapılan işlemlerin tümünü sırasıyla gösteriyor. Eğer bu aşamalardan sadece biri olmazsa kağıt üretimi yapılamaz. Tüm bu işlemlere eşdeğer bir iş de yaban arısının birkaç santimetre boyundaki vücudunda yapılmaktadır.
Yaban arıları yuvalarındaki petekleri yapmak için kağıt kullanırlar. Arı bu kağıdı kendi tükürüğüyle karıştırdığı çiğnenmiş tahta parçalarından yapar. Mobilyacılıkta kullanılan suntalar da yaban arısının kullandığı yöntemin aynısı ile üretilir. Sunta üretiminde arının tükürüğü yerine tutkal kullanılır.
Yaban arıları üstün bir ağaç işleme ve kağıt fabrikası gibidir. Ancak onlar, oldukça büyük endüstriyel kuruluşların yaptığı tüm işlemleri küçücük bedenlerinde yaparlar. Bu, kağıt endüstrisinin yaban arılarından daha öğrenebileceği çok şey olduğunu gösterir.
Bilim adamlarının robot kol tasarlarken en çok zorlandıkları konulardan biri kolun hareket özelliğidir. Bir robot kolun işe yarayabilmesi için, o işin gerektirdiği tüm hareketleri yapabilmesi şarttır. Allah doğadaki canlıların uzuvlarını, ihtiyaçlarını tam karşılayabilecek hareket kapasitesine sahip olarak yaratmıştır. Bu konudaki en çarpıcı örneklerden biri de fillerin hortumudur.
Filin 50 bin adet kasla çevrili hortumu mükemmel yapısı sayesinde çok fazla incelik ve hassasiyet gerektiren işlemleri yapabilme kabiliyetine de sahiptir. Ayrıca hayvan hortumunu istediği her yöne doğru hareket ettirebilir.
ABD'deki Rice Üniversitesi'nde yapılan robot kol, fil hortumunun ne kadar üstün bir tasarım olduğunu daha net ortaya çıkarmıştır.
Fil hortumunda iskelet benzeri tek bir yapı bulunmaz. Bu özellik, hortuma büyük bir hareketlilik imkanı ve hafiflik sağlar. Buna karşın robotik kolun bir omurgası vardır. Fil hortumu her yere yönelebilecek kadar büyük bir hareket serbestliğine sahiptir. Oysa robotik kol sahip olduğu 16 bağlantı sayesinde sadece 32 çeşit hareket yapabilir.
Tüm bunlar göstermektedir ki, filin hortumu, her özelliğiyle Allah'ın yaratma sanatındaki kusursuzluğu gözler önüne seren özel bir yapıdır.
a. Bel
b. Omuz
c. Dirsek
d. Bilek
e. Kıvırma
f. Sallama
g. Yalpa
Üst solda 6 çeşit hareket yapabilen bir robot kol görülüyor. Ortada ise filin hortumundan örnek alınarak hazırlanan ve 32 çeşit hareket yapabilen robot hortum görülüyor. Eğer filler kendi hortumları yerine bu yapay hortumu kullansalardı büyük güçlüklerle karşılaşırlardı. Çünkü fillerin hortumu yapay hortumla kıyaslanamayacak kadar büyük bir hareket kapasitesine ve yeteneğe sahiptir.
Bilim adamları her geçen gün doğada keşfettikleri benzersiz yapılar ve sistemler karşısında hayrete düşmekte ve bunlara duydukları hayranlığı insanlık yararına yeni teknolojiler üretmek için kullanarak göstermektedirler.
Doğada var olan mükemmel sistemlerin, uygulanan olağanüstü tekniklerin insanoğlunun akıl ve bilgisinin çok üstünde olduğunun, mevcut problemlere benzersiz çözümler sunduğunun farkına varan bilim adamları, artık senelerce uğraşarak çözüm getiremedikleri pek çok konuda doğadaki tasarımların yardımına başvurmaktadırlar. Bunun sonucu olarak da kısa zamanda, başarılı sonuçlar elde etmeleri mümkün olmaktadır.
Ayrıca doğanın taklidi ile birlikte bilim adamları gerek vakit ve emek açısından, gerekse maddi kaynakların isabetli kullanılması bakımından da çok önemli kazançlar sağlamaktadırlar.
Doğadaki tasarımların üstünlüğünün kabul edilmesi ile birlikte, kuşkusuz evrimciler yeni bir hayal kırıklığı, yeni bir umutsuzluk yaşamışlardır. Çünkü evrimcilerin, canlıların zaman içerisinde basitten komplekse doğru bir gelişim içinde oldukları ve bu canlılardaki tasarımların da tesadüf eseri oluştukları yönündeki bilim dışı iddialarının geçersizliği bir kez daha ispatlanmıştır.
Ayrıca şimdiye kadar tasarımlarına hayranlık duydukları, benzersiz sanatını, ilmini ve aklını takdirle övdükleri gücün tesadüfler olamayacağını, bunların ancak çok üstün Yaratıcımız'ın eseri olabileceğini -istemeyerek de olsa- kabul etmek durumunda kalmışlardır.
Alemlerin Rabbi olan Allah canlılarda eşi benzeri olmayan eksiksiz sistemler var edendir. Allah herşeyi kusursuzca yaratandır. Bunu kabul etmek istemeyenler ahiret günü kesinlikle dönüşü olmayacak bir pişmanlık yaşayacaklardır.
O, biri diğeriyle 'tam bir uyum' (mutabakat) içinde yedi gök yaratmış olandır. Rahman (olan Allah)ın yaratmasında hiçbir 'çelişki ve uygunsuzluk' (tefavüt) göremezsin. İşte gözü(nü) çevirip-gezdir; herhangi bir çatlaklık (bozukluk ve çarpıklık) görüyor musun? Sonra gözünü iki kere daha çevirip-gezdir; o göz (uyumsuzluk bulmaktan) umudunu kesmiş bir halde bitkin olarak sana dönecektir.
(Mülk Suresi, 3-4)
... Sen Yücesin,
bize öğrettiğinden başka bizim hiçbir bilgimiz yok.
Gerçekten Sen, herşeyi bilen,
hüküm ve hikmet sahibi olansın.
(Bakara Suresi, 32)
1 Nanoteknoloji, teknolojinin, büyüklüğü metrenin 100 milyon ile 1 milyarda biri arasında değişen malzemelerin üretimi, montajı ve kullanımı ile ilglinen bir koludur.
2 http://www.biomimicry.org/reviews_text.html
3 http://www.bfi.org/trimtab/spring01/TrimtabSpring01.pdf
4 http://www.biomimicry.org/reviews_text.html; Michelle Nijhuis, Hidgh Country News, July 06, 1998, Vol.30, No.13
5 Nature. 18 0cak 2001
6 http://www.biomimicry.org/faq.html
7 http://www.jehovantodistajat. fi/library/g/2000/1/22/article_01.htm
8 http://www.jehovantodistajat. fi/library/g/2000/1/22/article_01.htm)
9 Bilim ve Teknik Dergisi, Ağustos 1994, s.43
10 http://www.watchtower.org/library/g/2000/1/22/article_02.htm
11 http://www.nature.com/cgi-taf/DynaPage. taf?file=/nature/journal/v409/n6818/full/409413a0_fs.html&_UserReference=C0A804EF46B465AFF2C953AE40623B641423
12 http://www.natlogic.com/resorces/nbl/v06/n22.html
13 http://www.biomimicry.org/reviews_text.html
14 http://www.biomimicry.org/reviews_text.html
15 http://www.rdg. ac. uk/AcaDepts/cb/96vincent.html
16 http://www.the-scientist.com/yr1991/july/research_910708.html
17 NewYork Tımes,11 Aralık 2001
18 http://www.biomimicry.org/reviews_text.html; David Perlman, San Francisco Chronicle, November 30, 1997
19 "Malzeme Biliminin Önderlerinden İlhan Aksay", Bilim ve Teknik, Şubat 2002 s.92
20 www.princeton.edu/.../publicity/ PAW19980128/0128feat.htm
21 "Malzeme Biliminin Önderlerinden İlhan Aksay", Bilim ve Teknik, Şubat 2002 s.93
22 "Malzeme Biliminin Önderlerinden İlhan Aksay", Bilim ve Teknik, Şubat 2002 s.93
23 Julian Vincent, New Scientist, "Tricks of Nature", 17 August 1996, vol.151, No.2043, s.38
24 "Malzeme Biliminin Önderlerinden İlhan Aksay", Bilim ve Teknik, Şubat 2002 s.93
25 Bilim ve Teknik, Şubat 1995, s.38
26 http://www.watchtower.org/library/g/2000/1/22/article_02.htm
27 Janine M.Benyus, Biomimicry, Innovation Inspired By Nature, William Morrow and Company Inc. , New York, 1998, s.99-100
28 http://www.watchtower.org/library/g/2000/1/22/article_02.htm
29 Julian Vincent, New Scientist, "Tricks of Nature", 17 August 1996, vol.151, No.2043, s.38
30 Julian Vincent, New Scientist, "Tricks of Nature", 17 August 1996, vol.151, No.2043, s.39
31 Julian Vincent, New Scientist, "Tricks of Nature", 17 August 1996, vol.151, No.2043, s.40
32 http://www.rdg. ac. uk/AcaDepts/cb/97hepworth.html
33 Julian Vincent, New Scientist, "Tricks of Nature", 17 August 1996, vol.151, No.2043, s.39
34 Julian Vincent, New Scientist, "Tricks of Nature", 17 August 1996, vol.151, No.2043, s.40
35 Julian Vincent, New Scientist, "Tricks of Nature", 17 August 1996, vol.151, No.2043, s. 40
36 Structure and Properties of Spider Silk", Endeavour, Ocak 1986, sayı 10, s.42
37 http://www.watchtower.org/library/g/2000/1/22/article_02.htm
38 Fritz Vollrath & David P.Knight, Nature, 29 March 2001, 541-548
39 http://iago. stfx. ca/people/edemont/abstracts/spider.html
40 http://faculty. washington.edu/yagerp/silkprojecthome.html;Gosline, J.M. , M.E.Demont, et al.(1986)."The structure and properties of silk. " Endeavour 10(1): 37-43
41 http://www.yourplanetearth.org/terms/details.php3?term=Biomimicry
42 http://faculty. washington.edu/yagerp/silkprojecthome.html; [(1) Shear, W.A. , J.M.Palmer, et al.(1989)."A Devonian Spinneret: Early Evidence of Spiders and Silk Use. " Science 246:479-481.
43 Prof. Dr. Ali Demirsoy, Kalıtım ve Evrim, s.80
44 http://www.parfumsraffy.com
45 Ayrıntılı bilgi için bakınız: Doğadaki Tasarım, Harun Yahya …
46 New York Times, Mühendisler tasarım için doğadan örnek alıyor, 11 Aralık 2001
47 "Engineers Ask Nature for Design Advice", Jim Robbins, New York Times, 11 December 2001
48 Carmelo Di Bartolo, "Biyonik: Tasarımda 'doğal' gelişim", Domus, Aralık 1999, s. 180
49 http://www.nature.com/cgi-taf/DynaPage.taf?file=/nature/journal/v410/n6830/full/410736a0_fs.html&_UserReference=C0A804EC46516639F0E0A2AC62BC3BB39855; John Whitfield, Nature, "Making Crops Cry For Help", 12 April 2001, s.736-737
50 http://www.nature.com/cgi-taf/DynaPage. taf?file=/nature/journal/v410/n6830/full/410736a0_fs.html&_UserReference=C0A804EC46516639F0E0A2AC62BC3BB39855; John Whitfield, Nature, "Making Crops Cry For Help", 12 April 2001, s.736-737
51 http://www.nature.com/cgi-taf/DynaPage. taf?file=/nature/journal/v410/n6830/full/410736a0_fs.html&_UserReference=C0A804EC46516639F0E0A2AC62BC3BB39855; John Whitfield, Nature, "Making Crops Cry For Help", 12 April 2001, s.736-737
52 Science News, 4 Ağustos 2001
53 Science News, 4 Ağustos 2001
54 http://www.watchtower.org/library/g/2000/1/22/article_02.htm
55 Wild Technology, Phil Gates s. 38
56 Stuart Blackman, "Synchorinised Swimming", BBC Wildlife, Şubat 1998, s.57
57 Bilim ve Teknik Nisan 1985, "İşte Doğa"
58 http://waquarium.mic.hawaii.edu/MLP/root/html/MarineLife/Invertebrates/Molluscs/Nautilus.html; Waikiki Aquarium Education Department, December 1998
59 http://www.godandscience.org/evolution/design.html; The Designing Times, Vol.1, No.8. , March 2000
60 http://www.nature.com/nsu/010208/010208-1.html; Philip Ball, Nature, "Astounding Bat Mobility", 2 February 2001
61 http://www.nature.com/nsu/010208/010208-1.html; Philip Ball, Nature, "Astounding Bat Mobility", 2 February 2001
62 AWACS "Havaya Konuşlandırılmış Uyarı ve kontrol Sistemi"nin ingilizce kısaltmasıdır
63 Bezen Çetin, "Hava Savunma Sistemleri", Bilim ve Teknik, Ocak 1995, s. 33
64 http://www.szgdocent.org/ff/f-bateco.htm
65 Wild Technology, Phil Gates, sf.53
66http://www.hqmc. usmc. mil/factfile. nsf/7e931335d515626a8525628100676e0c/b69da93e5a6094a18525626e00490b3f?OpenDocument
67 Bu konuda ayrıntılı bilgi için Bakınız: "Doğadaki Tasarım", Harun Yahya, Vural yayıncılık, ss: 86-87
68 Wild Technology, Phil Gates, sf.52
69 Betty Mamane, "Le surdoué du garnd blue", cience et vie Junior, Ağustos 1998, ss. 79-84
70 Sonar kelimesi, İngilizce "Sound Navigation and Ranging"'in kısaltmasıdır.
71 http://www.robotbooks.com/sonar-robots.htm
72 http://www.oceanetic.com/sonar/sonar1.jpg
73 http://www.bfi.org/trimtab/spring01/TrimtabSpring01.pdf
74 New Scientist, 14 Ekim 2000, s.20
75 "Kirliliğe Balık Dedektörü", Science'den çev. : Mustafa Öztürk, Bilim ve Teknik, Şubat 1991 sf. 43.
76 Bilim ve Teknik, Kasım 1985, s. 11
77 Bu konu hakkında daha detaylı bilgi için bakınız: Harun Yahya, Doğadaki Tasarım, . . .
78 "Harika Balık", Bilim ve Teknik, Mart 1991, sf. 43
79 "Kusursuz Uçuş Makineleri", Reader's Digeest'tan çev: Ruhsar Kansu, Bilim ve Teknik, Sayı:136, Mart 1979, s. 21
80 http://www.yourplanetearth.org/terms/details.php3?term=Biomimicry
81 "Kusursuz Uçuş Makineleri", Reader's Digeest'tan çev: Ruhsar Kansu, Bilim ve Teknik, Sayı:136, Mart 1979, s. 22
82 "Bilim Damlaları, Yeni Avcı Uçakları: Pougatchev'in Kobraları", Doç. Dr. Selçuk Aslan, Bilim ve Teknik, …….
83 Bu konuda ayrıntılı bilgi için bakınız: Hayatın Gerçek Kökeni, Harun Yahya, …..
84 "Biyonik, Doğayı Kopya Etmektir", Science et Vie'den Çev. : Dr.Hanaslı Gür, Bilim ve Teknik Temmuz 1985, s. 19-20
85 http://www.biltek. tubitak. gov. tr/dergi/98/ocak/yakitsiz.html
86 http://www.fonz.org/zoogoer/zg1999/28(4)biomimetics.htm : "Designs from Life", Robin Meadows, Zooger, July/August 1999
87 "Biyonik, Doğayı Kopya Etmektiré, Science et Vie'den Çev. : Dr.Hanaslı Gür, Bilim ve Teknik Temmuz 1985, s. 19
88 "Kusursuz Uçuş Makineleri", Reader's Digeest'tan çev: Ruhsar Kansu, Bilim ve Teknik, Sayı:136, Mart 1979, s. 23
89 Clive Gifford, Her Yönüyle Uçaklar, Tubitak Popüler Bilim Kitapları, TUBİTAK, 4.Basım Ocak 1999 s. 24
90 http://www.sciam.com/2001/0601issue/0601dickinson.html; Michael Dickinson, Scientific American, Solving the Mystery of Insect Flight, June 2001
91 http://www.sciam.com/2001/0601issue/0601dickinson.html; Michael Dickinson, Scientific American, Solving the Mystery of Insect Flight, June 2001
92 http://www.sciam.com/2001/0601issue/0601dickinson.html; Michael Dickinson, Scientific American, Solving the Mystery of Insect Flight, June 2001
93 Bilim ve Teknik, TÜBİTAK Yayınları, No.395, Ekim 2000, s.77
94 news. bbc. co. uk/. . . /athletics-track/ newsid_935000/935260. stm
95 Bilim ve Teknik, TUBİTAK Yayınları, No.395, Ekim 2000, s.77
96http://www.utexas. edu/admin/opa/oncampus/01oc_issues/oc010627/oc_vipers.html; On Campus, Vol.28, No.08, 27 June 2001
97 http://www.utexas. edu/admin/opa/oncampus/01oc_issues/oc010627/oc_vipers.html; On Campus, Vol.28, No.08, 27 June 2001
98 http://www.utexas. edu/admin/opa/oncampus/01oc_issues/oc010627/oc_vipers.html; On Campus, Vol.28, No.08, 27 June 2001
99 International Wildlife, September-October 1992, s. 34
100 "Üzerinizdeyken isteğe göre rengi değişen elbise geliyor", Mustafa Kutlay, Hurriyet Gazetesi, 26 Aralık 2000
101 http://www.rdg. ac. uk/Biomim/00parker.htm; [Parker, A.R. , Light-reflection strategies, American Scientist (1999a) 87 (3), 248-255. ]
102 Parker, A. R. et al. Water capture by a desert beetle, Nature 414, 33-34 (2001) Brief Communications
103 Parker, A. R. et al. Water capture by a desert beetle, Nature 414, 33-34 (2001) Brief Communications
104 Stuart Blackman, BBC Wildlife, "Fatal Flasher", April 1998, vol.16, no.4, s.60
105 http://www.milliyet.com. tr/2001/07/31/yasam/yas07.html
106 http://www.wbsj.org/bird/contribution/97_910E.html
107 http://www.wbsj.org/bird/contribution/97_910E.html
108 http://www.bfi.org/trimtab/spring01/TrimtabSpring01.pdf
109 http://www.mercek.org/s2/s02.php?sayi=s2
110 ABD Ulusal Sandia Laboratuvarları Haber Bülteni, 12 Temmuz 2001
111 http://www.findarticles.com/cf_0/m1511/1_21/58398795/print. jhtml; Robert Kunzig, Discover, "The Beat Goes On", January 2000
112 http://www.findarticles.com/cf_0/m1511/1_21/58398795/print. jhtml; Robert Kunzig, Discover, "The Beat Goes On", January 2000
113 http://www.findarticles.com/cf_0/m1511/1_21/58398795/print.html; Robert Kunzig, Discover, "The Beat Goes On", January 2000
114http://www.findarticles.com/cf_0/m1511/1_21/58398795/print. jhtml; Robert Kunzig, Discover, "The Beat Goes On", January 2000
115 http://www.newscientist.com/hottopics/ai/strikesback. jsp
116 Wild Technology, Phil Gates, s. 54
117 David H.Hubbel, Eye Brain and Vision, Scientific American Library, 1988, s.34.
118 http://www.nature.com/cgi-taf/DynaPage. taf?file=/nature/journal/v410/n6828/full/410510a0_fs.html&filetype=&_UserReference=C0A804EC46516639F0E0A2AC62BC3BB39855; Jim Giles, Nature, "Think Like A Bee", 29 March 2001, s.510-512
119 http://www.nature.com/cgi-taf/DynaPage.taf?file=/nature/journal/v410/n6828/full/410510a0_fs.html&filetype=&_UserReference=C0A804EC46516639F0E0A2AC62BC3BB39855; Jim Giles, Nature, "Think Like A Bee", 29 March 2001, s.510-512
120 Peter M.Narins Acoustics: In a Fly's Ear, Nature 410, 644-645 (2001)
121 Peter M.Narins Acoustics: In a Fly's Ear, Nature 410, 644-645 (2001)
122 http://www.cruzio.com/~devarco/nature.htm
123 Natiaonal Georaphic Channel (Türkiye), Animal Inventors, 25/11/2001
124 "Biyonik, Doğayı Kopya Etmektir", Science et Vie'den Çev. : Dr.Hanaslı Gür, Bilim ve Teknik Temmuz 1985, s. 21
125 http://www.fonz.org/zoogoer/zg1999/28(4)biomimetics.htm
126 David Attenborough, The Private Life Of Plants, Princeton University Press, 1995, s.291
127 http://www.fonz.org/zoogoer/zg1999/28(4)biomimetics.htm
128 "Biyonik, Doğayı Kopya Etmektir", Science et Vie'den Çev. : Dr.Hanaslı Gür, Bilim ve Teknik Temmuz 1985, s. 21
129 http://www.nature.com/nsu/011206/011206-4.html Erica Klarreich, Good Vibrations, Nature Science Update, 3 Nisan 2001
130 http://mitpress. mit. edu/catalog/item/default. asp?sid=059CE164-6183-4410-8320-D5828734B95A&ttype=2&tid=8812
131 Bu konuda ayrıntılı bilgi için bakınız: Harun Yahya, Düşünen insanlar için, Vural Yayıncılık, Aralık 2000, 4. baskı ss. 71-74.
132 http://www.howstuffworks.com/snakebot.htm
133 http://www.newscientist.com/news/news. jsp?id=ns9999637
134 http://ais. gmd. de/BAR/SCORPION/biology.htm
135 http://ais. gmd. de/BAR/SCORPION/
136 http://www.newscientist.com/news/news. jsp?id=ns9999637
137 http://www.spie.org/web/oer/september/sep00/cover1.html
138 http://www.spie.org/web/oer/september/sep00/cover1.html
139 http://www.spie.org/web/oer/september/sep00/cover1.html
140 http://www.berkeley.edu/news/media/releases/2001/11/30_lobst.html
141 http://www.berkeley.edu/news/media/releases/2001/11/30_lobst.html
142 http://www.rdg. ac. uk/Biomim/projects.htm
143 http://news. bbc. co. uk/low/english/sci/tech/newsid_781000/781611. stm; BBC News Online, 7 June, 2000
144 http://www.worldwealth. net/samplemag/ArticleGeckoPrint.html; World Wealth International, February 2001, Vol 1, Issue No.1
145 http://www.discover.com/sept_00/featGecko.html; Fenella Saunders, Discover, September 2000, vol.21, No.9
146 http://www.discover.com/sept_00/featGecko.html; Fenella Saunders, Discover, September 2000, vol.21, No.9
147 http://www.discover.com/sept_00/featgecko.html; Fenella Saunders, Discover, September 2000, vol.21, No.9
148 http://www.discover.com/sept_00/featgecko.html; Fenella Saunders, Discover, September 2000, vol.21, No.9
149 http://www.discover.com/sept_00/featgecko.html; Fenella Saunders, Discover, September 2000, vol.21, No.9
150 Wild Technology, Phil Gates, s. 5
151 Wild Technology, Phil Gates, s. 55
152 Wild Technology, Phil Gates, s. 64
153 Wild Technology, Phil Gates, s. 67
154 Wild Technology, Phil Gates, s. 67
155 http://www.yourplanetearth.org/terms/details.php3?term=Biomimicry
156 Wild Technology, Phil Gates, s. 65
157 Bu konuda ayrıntılı bilgi için bakınız: Harun Yahya, Düşünen insanlar için, Vural Yayıncılık, Aralık 2000, 4. baskı ss. 99-101
158 Wild Technology, Phil Gates, s. 66
159 http://www.bitkidunyasi.net/ilgincbitkiler/ilgincbitkiler1.html
160 Wild Technology, Phil Gates, s. 44
161 Wild Technology, Phil Gates, s. 67
162 Natiaonal Georaphic Channel (Türkiye), Animal Inventors, 25/11/2001
163 Wild Technology, Phil Gates, s. 16
164 Richard Dawkins, Climbing Mount Im probable, W.W. Norton & Company; ISBN: 0393039307, September 1996, s.92
165 http://ece.clemson.edu/crb/labs/biomimetic/elephant.htm